IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6282958.html
   My bibliography  Save this article

Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay

Author

Listed:
  • Hua Liu
  • Yong Ye
  • Yumei Wei
  • Weiyuan Ma
  • Ming Ma
  • Kai Zhang

Abstract

In this paper, we establish a reaction-diffusion predator-prey model with weak Allee effect and delay and analyze the conditions of Turing instability. The effects of Allee effect and delay on pattern formation are discussed by numerical simulation. The results show that pattern formations change with the addition of weak Allee effect and delay. More specifically, as Allee effect constant and delay increases, coexistence of spotted and stripe patterns, stripe patterns, and mixture patterns emerge successively. From an ecological point of view, we find that Allee effect and delay play an important role in spatial invasion of populations.

Suggested Citation

  • Hua Liu & Yong Ye & Yumei Wei & Weiyuan Ma & Ming Ma & Kai Zhang, 2019. "Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay," Complexity, Hindawi, vol. 2019, pages 1-14, November.
  • Handle: RePEc:hin:complx:6282958
    DOI: 10.1155/2019/6282958
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6282958.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6282958.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6282958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gui-Quan Sun & Li Li & Zhen Jin & Zi-Ke Zhang & Tao Zhou, 2013. "Pattern Dynamics in a Spatial Predator-Prey System with Allee Effect," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, September.
    2. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    3. Çelik, C. & Merdan, H. & Duman, O. & Akın, Ö., 2008. "Allee effects on population dynamics with delay," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 65-74.
    4. Weiming Wang & Yongli Cai & Yanuo Zhu & Zhengguang Guo, 2013. "Allee-Effect-Induced Instability in a Reaction-Diffusion Predator-Prey Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Shi & Jiaying Zhou & Yong Ye, 2023. "Pattern Formation in a Predator–Prey Model with Allee Effect and Hyperbolic Mortality on Multiplex Networks," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    2. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    3. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    3. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Guo, Gaihui & Qin, Qijing & Cao, Hui & Jia, Yunfeng & Pang, Danfeng, 2024. "Pattern formation of a spatial vegetation system with cross-diffusion and nonlocal delay," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Yurong Dong & Hua Liu & Yumei Wei & Qibin Zhang & Gang Ma, 2024. "Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay," Mathematics, MDPI, vol. 12(18), pages 1-24, September.
    6. Duman, O. & Merdan, H., 2009. "Stability analysis of continuous population model involving predation and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1218-1222.
    7. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    8. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Merdan, H. & Duman, O. & Akın, Ö. & Çelik, C., 2009. "Allee effects on population dynamics in continuous (overlapping) case," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1994-2001.
    10. Boli Xie & Zhijun Wang & Yakui Xue & Zhenmin Zhang, 2015. "The Dynamics of a Delayed Predator-Prey Model with Double Allee Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, October.
    11. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    12. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.
    14. Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    15. Zhang, Feifan & Sun, Jiamin & Tian, Wang, 2022. "Spatiotemporal pattern selection in a nontoxic-phytoplankton - toxic-phytoplankton - zooplankton model with toxin avoidance effects," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    16. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    17. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    18. Merdan, H. & Duman, O., 2009. "On the stability analysis of a general discrete-time population model involving predation and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1169-1175.
    19. Érika Diz-Pita & M. Victoria Otero-Espinar, 2021. "Predator–Prey Models: A Review of Some Recent Advances," Mathematics, MDPI, vol. 9(15), pages 1-34, July.
    20. Tang, Xiaosong & Zhang, Xiaoyu & Liu, Yiting & Li, Wankun & Zhong, Qi, 2023. "Global stability and Turing instability deduced by cross-diffusion in a delayed diffusive cooperative species model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6282958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.