IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i4p1956-1962.html
   My bibliography  Save this article

Allee effect in a discrete-time predator–prey system

Author

Listed:
  • Çelik, Canan
  • Duman, Oktay

Abstract

In this paper, we study the stability of a discrete-time predator–prey system with and without Allee effect. By analyzing both systems, we first obtain local stability conditions of the equilibrium points without the Allee effect and then exhibit the impact of the Allee effect on stability when it is imposed on prey population. We also show the stabilizing effect of Allee effect by numerical simulations and verify that when the prey population is subject to an Allee effect, the trajectory of the solutions approximates to the corresponding equilibrium point much faster. Furthermore, for some fixed parameter values satisfying necessary conditions, we show that the corresponding equilibrium point moves from instability to stability under the Allee effect on prey population.

Suggested Citation

  • Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1956-1962
    DOI: 10.1016/j.chaos.2007.09.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Guirong & Lu, Qishao & Qian, Linning, 2007. "Complex dynamics of a Holling type II prey–predator system with state feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 448-461.
    2. Hadjiavgousti, Despina & Ichtiaroglou, Simos, 2008. "Allee effect in a prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 334-342.
    3. Jing, Zhujun & Yang, Jianping, 2006. "Bifurcation and chaos in discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 259-277.
    4. Cheng, Zunshui & Lin, Yiping & Cao, Jinde, 2006. "Dynamical behaviors of a partial-dependent predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 67-75.
    5. Sun, Chengjun & Han, Maoan & Lin, Yiping & Chen, Yuanyuan, 2007. "Global qualitative analysis for a predator–prey system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1582-1596.
    6. Moghadas, S.M. & Corbett, B.D., 2008. "Limit cycles in a generalized Gause-type predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1343-1355.
    7. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blé, Gamaliel & Dela-Rosa, Miguel Angel, 2019. "Neimark–Sacker bifurcation in a tritrophic model with defense in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 124-139.
    2. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    3. Pal, Pallav Jyoti & Saha, Tapan, 2015. "Qualitative analysis of a predator–prey system with double Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 36-63.
    4. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    5. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    6. Érika Diz-Pita & M. Victoria Otero-Espinar, 2021. "Predator–Prey Models: A Review of Some Recent Advances," Mathematics, MDPI, vol. 9(15), pages 1-34, July.
    7. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    2. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    4. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    5. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    6. Elettreby, M.F., 2009. "Two-prey one-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2018-2027.
    7. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    8. Wu, Chufen & Yang, Yong & Weng, Peixuan, 2013. "Traveling waves in a diffusive predator–prey system of Holling type: Point-to-point and point-to-periodic heteroclinic orbits," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 43-53.
    9. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    10. Zhang, Xue & Zhang, Qing-ling & Zhang, Yue, 2009. "Bifurcations of a class of singular biological economic models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1309-1318.
    11. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    12. Tian, Yuan & Li, Chunxue & Liu, Jing, 2023. "Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    14. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    15. Kumar, Udai & Mandal, Partha Sarathi, 2022. "Role of Allee effect on prey–predator model with component Allee effect for predator reproduction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 623-665.
    16. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    17. Yang, Jin & Tang, Guangyao, 2019. "Piecewise chemostat model with control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 126-142.
    18. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    19. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    20. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1956-1962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.