IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003800.html
   My bibliography  Save this article

A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory

Author

Listed:
  • Gökçe, Aytül

Abstract

This paper deals with a model of population dynamics comprising Allee effect and weakening memory with constant time delays. Since predator density depends on the prey density in current time and in past, a two-component model of prey-predator interactions is complemented with a third differential equation for the influence of recent past. The role of constant time delays incorporated in the functional form of Allee effect (referred as delays in competition and cooperation) is investigated analytically and numerically. Steady states of the model are obtained and the local stability analysis around the coexisting state is calculated in the presence of both delays. The critical threshold for time delays, above which the stability of the system switches from stable (unstable) to unstable (stable), is computed for various cases. Analytical findings of this paper are supported with numerical simulations, where time evolution as well as numerical bifurcation diagrams are presented. The results of this paper demonstrate that the influence of past on the prey-predator density in the present of time delay may have a considerable effect upon the system behaviour and can give important insights into underlying biological mechanism.

Suggested Citation

  • Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003800
    DOI: 10.1016/j.amc.2022.127306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo González-Olivares & Javier Cabrera-Villegas & Fernando Córdova-Lepe & Alejandro Rojas-Palma, 2019. "Competition among Predators and Allee Effect on Prey, Their Influence on a Gause-Type Predation Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, March.
    2. Sahoo, Banshidhar & Poria, Swarup, 2019. "Dynamics of predator–prey system with fading memory," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 319-333.
    3. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Merdan, H. & Duman, O. & Akın, Ö. & Çelik, C., 2009. "Allee effects on population dynamics in continuous (overlapping) case," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1994-2001.
    5. Çelik, C. & Merdan, H. & Duman, O. & Akın, Ö., 2008. "Allee effects on population dynamics with delay," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 65-74.
    6. Zhao, Hongyong & Huang, Xuanxuan & Zhang, Xuebing, 2015. "Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 300-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Érika Diz-Pita & M. Victoria Otero-Espinar, 2021. "Predator–Prey Models: A Review of Some Recent Advances," Mathematics, MDPI, vol. 9(15), pages 1-34, July.
    2. Duman, O. & Merdan, H., 2009. "Stability analysis of continuous population model involving predation and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1218-1222.
    3. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    4. Merdan, H. & Duman, O., 2009. "On the stability analysis of a general discrete-time population model involving predation and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1169-1175.
    5. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis and global dynamics in a predator–prey system of Leslie type with an increasing functional response," Ecological Modelling, Elsevier, vol. 455(C).
    6. Hua Liu & Yong Ye & Yumei Wei & Weiyuan Ma & Ming Ma & Kai Zhang, 2019. "Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    7. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2020. "Delay induced nonlinear dynamics of oxygen-plankton interactions," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    10. Yurong Dong & Hua Liu & Yumei Wei & Qibin Zhang & Gang Ma, 2024. "Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay," Mathematics, MDPI, vol. 12(18), pages 1-24, September.
    11. Liu, Chao & Wang, Luping & Zhang, Qingling & Yan, Yun, 2017. "Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 682-698.
    12. Huang, Chengdai, 2018. "Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 643-652.
    13. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Merdan, H. & Duman, O. & Akın, Ö. & Çelik, C., 2009. "Allee effects on population dynamics in continuous (overlapping) case," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1994-2001.
    15. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Pal, D. & Samanta, G.P. & Mahapatra, G.S., 2017. "Selective harvesting of two competing fish species in the presence of toxicity with time delay," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 74-93.
    17. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.