IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p900-d366515.html
   My bibliography  Save this article

EvoPreprocess—Data Preprocessing Framework with Nature-Inspired Optimization Algorithms

Author

Listed:
  • Sašo Karakatič

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor 2000, Slovenia)

Abstract

The quality of machine learning models can suffer when inappropriate data is used, which is especially prevalent in high-dimensional and imbalanced data sets. Data preparation and preprocessing can mitigate some problems and can thus result in better models. The use of meta-heuristic and nature-inspired methods for data preprocessing has become common, but these approaches are still not readily available to practitioners with a simple and extendable application programming interface (API). In this paper the EvoPreprocess open-source Python framework, that preprocesses data with the use of evolutionary and nature-inspired optimization algorithms, is presented. The main problems addressed by the framework are data sampling (simultaneous over- and under-sampling data instances), feature selection and data weighting for supervised machine learning problems. EvoPreprocess framework provides a simple object-oriented and parallelized API of the preprocessing tasks and can be used with scikit-learn and imbalanced-learn Python machine learning libraries. The framework uses self-adaptive well-known nature-inspired meta-heuristic algorithms and can easily be extended with custom optimization and evaluation strategies. The paper presents the architecture of the framework, its use, experiment results and comparison to other common preprocessing approaches.

Suggested Citation

  • Sašo Karakatič, 2020. "EvoPreprocess—Data Preprocessing Framework with Nature-Inspired Optimization Algorithms," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:900-:d:366515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. C.R. Reeves, 1999. "Landscapes, operators and heuristic search," Annals of Operations Research, Springer, vol. 86(0), pages 473-490, January.
    3. Panos M Pardalos & Oleg A Prokopyev & Stanislav Busygin, 2006. "Continuous Approaches for Solving Discrete Optimization Problems," International Series in Operations Research & Management Science, in: Gautam Appa & Leonidas Pitsoulis & H. Paul Williams (ed.), Handbook on Modelling for Discrete Optimization, chapter 0, pages 39-60, Springer.
    4. Lagani, Vincenzo & Athineou, Giorgos & Farcomeni, Alessio & Tsagris, Michail & Tsamardinos, Ioannis, 2017. "Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i07).
    5. Othman Soufan & Dimitrios Kleftogiannis & Panos Kalnis & Vladimir B Bajic, 2015. "DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    6. Baihan Wang & Alfred Pozarickij & Mohsen Mazidi & Neil Wright & Pang Yao & Saredo Said & Andri Iona & Christiana Kartsonaki & Hannah Fry & Kuang Lin & Yiping Chen & Huaidong Du & Daniel Avery & Dan Sc, 2025. "Comparative studies of 2168 plasma proteins measured by two affinity-based platforms in 4000 Chinese adults," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    8. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    10. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    11. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    12. Kar Hoou Hui & Ching Sheng Ooi & Meng Hee Lim & Mohd Salman Leong & Salah Mahdi Al-Obaidi, 2017. "An improved wrapper-based feature selection method for machinery fault diagnosis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-10, December.
    13. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    14. Liu, Jiyin & Reeves, Colin R, 2001. "Constructive and composite heuristic solutions to the P//[summation operator]Ci scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(2), pages 439-452, July.
    15. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    16. Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
    17. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    18. Basso, Franco & Cox, Tomás & Pezoa, Raúl & Maldonado, Tomás & Varas, Mauricio, 2024. "Characterizing last-mile freight transportation using mobile phone data: The case of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    19. Andrea Albergoni & Florentina J. Hettinga & Wim Stut & Francesco Sartor, 2020. "Factors Influencing Walking and Exercise Adherence in Healthy Older Adults Using Monitoring and Interfacing Technology: Preliminary Evidence," IJERPH, MDPI, vol. 17(17), pages 1-18, August.
    20. Franck M. Ramaharo & Michael Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Working Papers hal-04262240, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:900-:d:366515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.