IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-32942-0_2.html
   My bibliography  Save this book chapter

Continuous Approaches for Solving Discrete Optimization Problems

In: Handbook on Modelling for Discrete Optimization

Author

Listed:
  • Panos M Pardalos

    (University of Florida)

  • Oleg A Prokopyev

    (University of Florida)

  • Stanislav Busygin

    (University of Florida)

Abstract

This chapter contains short expository notes on applying continuous approaches for solving discrete optimization problems. We discuss some general aspects of the connection between integer programming and continuous optimization problems, along with several specific examples. The considered problems include maximum clique, satisfiability, the Steiner tree problem, minimax and semidefinite programming.

Suggested Citation

  • Panos M Pardalos & Oleg A Prokopyev & Stanislav Busygin, 2006. "Continuous Approaches for Solving Discrete Optimization Problems," International Series in Operations Research & Management Science, in: Gautam Appa & Leonidas Pitsoulis & H. Paul Williams (ed.), Handbook on Modelling for Discrete Optimization, chapter 0, pages 39-60, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-32942-0_2
    DOI: 10.1007/0-387-32942-0_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sašo Karakatič, 2020. "EvoPreprocess—Data Preprocessing Framework with Nature-Inspired Optimization Algorithms," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
    2. Stefano Lucidi & Francesco Rinaldi, 2010. "An Exact Penalty Global Optimization Approach for Mixed-Integer Programming Problems," DIS Technical Reports 2010-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    4. Ma, Cheng & Zhang, Liansheng, 2015. "On an exact penalty function method for nonlinear mixed discrete programming problems and its applications in search engine advertising problems," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 642-656.
    5. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    6. Stefano Lucidi & Francesco Rinaldi, 2009. "Exact Penalty Functions for Nonlinear Integer Programming Problems," DIS Technical Reports 2009-10, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. M. Santis & F. Rinaldi, 2012. "Continuous Reformulations for Zero–One Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 75-84, April.
    8. Marianna De Santis & Francesco Rinaldi, 2010. "Continuous reformulations for zero-one programming problems," DIS Technical Reports 2010-16, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    9. Rupaj Kumar Nayak & Nirmalya Kumar Mohanty, 2020. "Solution of boolean quadratic programming problems by two augmented Lagrangian algorithms based on a continuous relaxation," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 792-825, April.
    10. S. Lucidi & F. Rinaldi, 2010. "Exact Penalty Functions for Nonlinear Integer Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 479-488, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-32942-0_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.