IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189143.html
   My bibliography  Save this article

An improved wrapper-based feature selection method for machinery fault diagnosis

Author

Listed:
  • Kar Hoou Hui
  • Ching Sheng Ooi
  • Meng Hee Lim
  • Mohd Salman Leong
  • Salah Mahdi Al-Obaidi

Abstract

A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks.

Suggested Citation

  • Kar Hoou Hui & Ching Sheng Ooi & Meng Hee Lim & Mohd Salman Leong & Salah Mahdi Al-Obaidi, 2017. "An improved wrapper-based feature selection method for machinery fault diagnosis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0189143
    DOI: 10.1371/journal.pone.0189143
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189143
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189143&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    2. Othman Soufan & Dimitrios Kleftogiannis & Panos Kalnis & Vladimir B Bajic, 2015. "DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunming Wu & Zhou Zeng, 2021. "A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
    2. Yu Ding & Fei Wang & Zhen-ya Wang & Wen-jin Zhang, 2018. "Fault Diagnosis for Hydraulic Servo System Using Compressed Random Subspace Based ReliefF," Complexity, Hindawi, vol. 2018, pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Dong & He Jiang, 2018. "A Two-Stage Regularization Method for Variable Selection and Forecasting in High-Order Interaction Model," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    2. Sašo Karakatič, 2020. "EvoPreprocess—Data Preprocessing Framework with Nature-Inspired Optimization Algorithms," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
    3. Kuen-Suan Chen & Kuo-Ping Lin & Jun-Xiang Yan & Wan-Lin Hsieh, 2019. "Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data," Sustainability, MDPI, vol. 11(11), pages 1-13, May.
    4. Yu, Haijing & Hu, Chenpei & Xu, Bing, 2022. "Re-examining the existence of a “resource curse”: A spatial heterogeneity perspective," Journal of Business Research, Elsevier, vol. 139(C), pages 1004-1011.
    5. Xuyang Teng & Hongbin Dong & Xiurong Zhou, 2017. "Adaptive feature selection using v-shaped binary particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-22, March.
    6. Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.