IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p136-d310169.html
   My bibliography  Save this article

On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials

Author

Listed:
  • Mohra Zayed

    (Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
    These authors contributed equally to this work.)

  • Mahmoud Abul-Ez

    (Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
    These authors contributed equally to this work.)

  • Mohamed Abdalla

    (Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
    Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
    These authors contributed equally to this work.)

  • Nasser Saad

    (School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
    These authors contributed equally to this work.)

Abstract

The generalization of Rodrigues’ formula for orthogonal matrix polynomials has attracted the attention of many researchers. This generalization provides new integral and differential representations in addition to new mathematical results that are useful in theoretical and numerical computations. Using a recently studied operational matrix for shifted Legendre polynomials with the variable coefficients fractional differential equations, the present work introduces the shifted Legendre-type matrix polynomials of arbitrary (fractional) orders utilizing some Rodrigues matrix formulas. Many interesting mathematical properties of these matrix polynomials are investigated and reported in this paper, including recurrence relations, differential properties, hypergeometric function representation, and integral representation. Furthermore, the orthogonality property of these polynomials is examined in some particular cases. The developed results provide a matrix framework that generalizes and enhances the corresponding scalar version and introduces some new properties with proposed applications. Some of these applications are explored in the present work.

Suggested Citation

  • Mohra Zayed & Mahmoud Abul-Ez & Mohamed Abdalla & Nasser Saad, 2020. "On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:136-:d:310169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. A. Tenreiro Machado & Manuel F. Silva & Ramiro S. Barbosa & Isabel S. Jesus & Cecília M. Reis & Maria G. Marcos & Alexandra F. Galhano, 2010. "Some Applications of Fractional Calculus in Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-34, November.
    2. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    3. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    5. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    6. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    7. Mudassir Shams & Bruno Carpentieri, 2023. "On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    8. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    9. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Asjad, Muhammad Imran & Sunthrayuth, Pongsakorn & Ikram, Muhammad Danish & Muhammad, Taseer & Alshomrani, Ali Saleh, 2022. "Analysis of non-singular fractional bioconvection and thermal memory with generalized Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    12. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    13. Daniele Mortari, 2023. "Representation of Fractional Operators Using the Theory of Functional Connections," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
    14. Machado, J. A. Tenreiro & Lopes, António M., 2016. "The N-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 130-138.
    15. Ayşegül Daşcıoğlu & Serpil Salınan, 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations," Mathematics, MDPI, vol. 7(1), pages 1-10, January.
    16. Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Maria de Jesus Estudillo-Ayala & Hugo Aguirre-Ramos & Juan Gabriel Avina-Cervantes & Jorge Mario Cruz-Duarte & Ivan Cruz-Aceves & Jose Ruiz-Pinales, 2020. "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    18. Deepika, S. & Veeresha, P., 2023. "Dynamics of chaotic waterwheel model with the asymmetric flow within the frame of Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Manuel D. Ortigueira, 2022. "A New Look at the Initial Condition Problem," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    20. Meshach Kumar & Utkal Mehta & Giansalvo Cirrincione, 2023. "A Novel Approach to Modeling Incommensurate Fractional Order Systems Using Fractional Neural Networks," Mathematics, MDPI, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:136-:d:310169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.