IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2160-d629035.html
   My bibliography  Save this article

Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems

Author

Listed:
  • Zaheer Masood

    (Department of Electrical and Electronics Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan)

  • Muhammad Asif Zahoor Raja

    (Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Taiwan)

  • Naveed Ishtiaq Chaudhary

    (Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Taiwan)

  • Khalid Mehmood Cheema

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Ahmad H. Milyani

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

The designed fractional order Stuxnet, the virus model, is analyzed to investigate the spread of the virus in the regime of isolated industrial networks environment by bridging the air-gap between the traditional and the critical control network infrastructures. Removable storage devices are commonly used to exploit the vulnerability of individual nodes, as well as the associated networks, by transferring data and viruses in the isolated industrial control system. A mathematical model of an arbitrary order system is constructed and analyzed numerically to depict the control mechanism. A local and global stability analysis of the system is performed on the equilibrium points derived for the value of α = 1. To understand the depth of fractional model behavior, numerical simulations are carried out for the distinct order of the fractional derivative system, and the results show that fractional order models provide rich dynamics by means of fast transient and super-slow evolution of the model’s steady-state behavior, which are seldom perceived in integer-order counterparts.

Suggested Citation

  • Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2160-:d:629035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. A. Tenreiro Machado & Alexandra M. S. F. Galhano & Juan J. Trujillo, 2014. "On development of fractional calculus during the last fifty years," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 577-582, January.
    2. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    3. Manuel Duarte Ortigueira & José Tenreiro Machado, 2019. "Fractional Derivatives: The Perspective of System Theory," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
    4. J. A. Tenreiro Machado & Manuel F. Silva & Ramiro S. Barbosa & Isabel S. Jesus & Cecília M. Reis & Maria G. Marcos & Alexandra F. Galhano, 2010. "Some Applications of Fractional Calculus in Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-34, November.
    5. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Mikhail Posypkin & Andrey Gorshenin & Vladimir Titarev, 2022. "Preface to the Special Issue on “Control, Optimization, and Mathematical Modeling of Complex Systems”," Mathematics, MDPI, vol. 10(13), pages 1-8, June.
    3. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    4. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    5. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    6. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    8. Gauhar Rahman & Kottakkaran Sooppy Nisar & Thabet Abdeljawad, 2020. "Tempered Fractional Integral Inequalities for Convex Functions," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    9. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    10. Hamid Boulares & Abdelkader Moumen & Khaireddine Fernane & Jehad Alzabut & Hicham Saber & Tariq Alraqad & Mhamed Benaissa, 2023. "On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    11. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    12. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    13. Vasily E. Tarasov, 2021. "Integral Equations of Non-Integer Orders and Discrete Maps with Memory," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    14. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    15. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    16. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    17. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    18. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    19. Zhenduo Sun & Nengneng Qing & Xiangzhi Kong, 2023. "Asymptotic Hybrid Projection Lag Synchronization of Nonidentical Variable-Order Fractional Complex Dynamic Networks," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    20. Bohaienko, Vsevolod & Gladky, Anatolij & Romashchenko, Mykhailo & Matiash, Tetiana, 2021. "Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2160-:d:629035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.