IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2654-d874412.html
   My bibliography  Save this article

On Hilfer Generalized Proportional Nabla Fractional Difference Operators

Author

Listed:
  • Qiushuang Wang

    (School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China)

  • Run Xu

    (School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China)

Abstract

In this paper, the Hilfer type generalized proportional nabla fractional differences are defined. A few important properties in the left case are derived and the properties in the right case are proved by Q -operator. The discrete Laplace transform in the sense of the left Hilfer generalized proportional fractional difference is explored. Furthermore, An initial value problem with the new operator and its generalized solution are considered.

Suggested Citation

  • Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2654-:d:874412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thabet Abdeljawad, 2013. "On Delta and Nabla Caputo Fractional Differences and Dual Identities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    2. Thabet Abdeljawad & Ferhan M. Atici, 2012. "On the Definitions of Nabla Fractional Operators," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, October.
    3. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    2. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.
    3. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    6. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    8. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    10. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    11. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    12. Mudassir Shams & Bruno Carpentieri, 2023. "On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    13. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    15. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    16. Pshtiwan Othman Mohammed & Hari Mohan Srivastava & Dumitru Baleanu & Rashid Jan & Khadijah M. Abualnaja, 2022. "Monotonicity Results for Nabla Riemann–Liouville Fractional Differences," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    17. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    19. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    20. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2654-:d:874412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.