IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics096007792300807x.html
   My bibliography  Save this article

Results on finite time stability of various fractional order systems

Author

Listed:
  • Panda, Sumati Kumari
  • Vijayakumar, Velusamy

Abstract

This article deals with the existence of the solution of Hilfer–Katugampola fractional derivatives, and we prove the stability results of the equilibrium point of the presented problem. Numerous authors have made substantial use of the concepts of fractional derivatives and fixed-point theory in order to produce stability results in neural networks containing complex-valued or real-valued inputs. In this connection, we discuss the finite stability of Caputo fractional derivatives as well as Caputo fractional-order complex-valued neural networks. We provide a numerical result that supports the theoretical discussion.

Suggested Citation

  • Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s096007792300807x
    DOI: 10.1016/j.chaos.2023.113906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300807X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. M. D. Qassim & K. M. Furati & N.-E. Tatar, 2012. "On a Differential Equation Involving Hilfer-Hadamard Fractional Derivative," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-17, June.
    4. J. A. Tenreiro Machado & Manuel F. Silva & Ramiro S. Barbosa & Isabel S. Jesus & Cecília M. Reis & Maria G. Marcos & Alexandra F. Galhano, 2010. "Some Applications of Fractional Calculus in Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-34, November.
    5. Badr Alqahtani & Andreea Fulga & Erdal Karapınar & Panda Sumati Kumari, 2019. "Sehgal Type Contractions on Dislocated Spaces," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    6. Abdon Atangana & Necdet Bildik, 2013. "The Use of Fractional Order Derivative to Predict the Groundwater Flow," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, October.
    7. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Wenwen & Xie, Jingu & Guo, Haihua & Wu, Yongbao, 2024. "Intermittent boundary control for fixed-time stability of reaction–diffusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Panda, Sumati Kumari & Vijayakumar, Velusamy & Nagy, A.M., 2023. "Complex-valued neural networks with time delays in the Lp sense: Numerical simulations and finite time stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Mohra Zayed & Mahmoud Abul-Ez & Mohamed Abdalla & Nasser Saad, 2020. "On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    3. Amiri, Pari & Samei, Mohammad Esmael, 2022. "Existence of Urysohn and Atangana–Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    5. Erdal Karapınar & Ravi P. Agarwal & Seher Sultan Yeşilkaya & Chao Wang, 2022. "Fixed-Point Results for Meir–Keeler Type Contractions in Partial Metric Spaces: A Survey," Mathematics, MDPI, vol. 10(17), pages 1-76, August.
    6. Cao, Baiheng & Wu, Xuedong & Wang, Yaonan & Zhu, Zhiyu, 2024. "Modified hybrid B-spline estimation based on spatial regulator tensor network for burger equation with nonlinear fractional calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 253-275.
    7. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    9. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    10. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    11. Asjad, Muhammad Imran & Sunthrayuth, Pongsakorn & Ikram, Muhammad Danish & Muhammad, Taseer & Alshomrani, Ali Saleh, 2022. "Analysis of non-singular fractional bioconvection and thermal memory with generalized Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    13. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    15. Ayşegül Daşcıoğlu & Serpil Salınan, 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations," Mathematics, MDPI, vol. 7(1), pages 1-10, January.
    16. Maria de Jesus Estudillo-Ayala & Hugo Aguirre-Ramos & Juan Gabriel Avina-Cervantes & Jorge Mario Cruz-Duarte & Ivan Cruz-Aceves & Jose Ruiz-Pinales, 2020. "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    17. Deepika, S. & Veeresha, P., 2023. "Dynamics of chaotic waterwheel model with the asymmetric flow within the frame of Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Nisar, Kottakkaran Sooppy & Logeswari, K. & Ravichandran, C. & Sabarinathan, S., 2023. "New frame of fractional neutral ABC-derivative with IBC and mixed delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    19. Duarte Valério & Manuel D. Ortigueira & António M. Lopes, 2022. "How Many Fractional Derivatives Are There?," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    20. Abbas, Saïd & Benchohra, Mouffak & Lazreg, Jamal-Eddine & Zhou, Yong, 2017. "A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 47-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s096007792300807x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.