IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010018.html
   My bibliography  Save this article

Legendre wavelet based numerical approach for solving a fractional eigenvalue problem

Author

Listed:
  • Gupta, Sandipan
  • Ranta, Shivani

Abstract

A new method based on the Legendre wavelet is applied in the present work to deal with the numerical solution of the eigenvalue problem of the fractional differential equation. The eigenvalue problem is considered with a different class of boundary conditions. The exact fractional integration of the Legendre wavelet is used in the present work. The proposed scheme demonstrated to compute eigenvalues that are real as well as complex and to improve the eigenvalues by increasing the Legendre wavelet parameters. The eigenfunction corresponding to these eigenvalues is also calculated. The solution of the proposed scheme is also improved by increasing the order of the Legendre wavelet parameters. Moreover, this paper also investigates the convergence of the proposed approach through several examples. Numerical results show the efficiency and applicability of the proposed method for solving fractional eigenvalue problems.

Suggested Citation

  • Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010018
    DOI: 10.1016/j.chaos.2021.111647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ying & Zuo, Qian, 2021. "Jacobi-Davidson method for the second order fractional eigenvalue problems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Razzaghi, M. & Yousefi, S., 2000. "Legendre wavelets direct method for variational problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(3), pages 185-192.
    3. J. A. Tenreiro Machado & Manuel F. Silva & Ramiro S. Barbosa & Isabel S. Jesus & Cecília M. Reis & Maria G. Marcos & Alexandra F. Galhano, 2010. "Some Applications of Fractional Calculus in Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-34, November.
    4. Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
    5. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    6. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    7. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    2. Xing, Sheng Yan & Lu, Jun Guo, 2009. "Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1163-1169.
    3. Li, Jing & Qi, Jiangang, 2015. "Eigenvalue problems for fractional differential equations with right and left fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 1-10.
    4. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    6. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    10. Jehad Alzabut & Weerawat Sudsutad & Zeynep Kayar & Hamid Baghani, 2019. "A New Gronwall–Bellman Inequality in Frame of Generalized Proportional Fractional Derivative," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    11. Singh, Somveer & Patel, Vijay Kumar & Singh, Vineet Kumar, 2018. "Application of wavelet collocation method for hyperbolic partial differential equations via matrices," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 407-424.
    12. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    13. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Filatrella, G., 2019. "Effect of the fractional foundation on the response of beam structure submitted to moving and wind loads," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 178-188.
    14. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    15. Ning, Xin & Ma, Yanyan & Li, Shuai & Zhang, Jingmin & Li, Yifei, 2018. "Response of non-linear oscillator driven by fractional derivative term under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 102-107.
    16. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Woafo, P., 2016. "On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 39-47.
    17. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    19. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.