IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p932-d1361827.html
   My bibliography  Save this article

On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media

Author

Listed:
  • Aneesh S. Deogan

    (Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Roeland Dilz

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Diego Caratelli

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
    Department of Research and Development, The Antenna Company, 5656 AE Eindhoven, The Netherlands)

Abstract

Fractional derivative operators are finding applications in a wide variety of fields with their ability to better model certain phenomena exhibiting spatial and temporal nonlocality. One area in which these operators are applicable is in the field of electromagnetism, thereby modelling transient wave propagation in complex media. To apply fractional derivative operators to electromagnetic problems, the operator must adhere to certain principles, like the trigonometric functions invariance property. The Grünwald–Letnikov and Marchaud fractional derivative operators comply with these principles and therefore could be applied. The fractional derivative arises when modelling frequency-dispersive dielectric media. The time-domain convolution integral in the relation between the electric displacement and the polarisation density, containing an empirical extension of the Debye model, is approximated directly. A common approach is to recursively update the convolution integral by approximating the time series by a truncated sum of decaying exponentials, with the coefficients found through means of optimisation or fitting. The finite-difference time-domain schemes using this approach have shown to be more computationally efficient compared to other approaches using auxiliary differential equation methods.

Suggested Citation

  • Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:932-:d:1361827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    2. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    3. Pietro Bia & Luciano Mescia & Diego Caratelli, 2016. "Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    2. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    3. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Marina Plekhanova & Guzel Baybulatova, 2020. "Multi-Term Fractional Degenerate Evolution Equations and Optimal Control Problems," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    6. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    7. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    9. Mudassir Shams & Bruno Carpentieri, 2023. "On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    10. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    11. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Raza, Ali & Ghaffari, Abuzar & Khan, Sami Ullah & Haq, Absar Ul & Khan, M. Ijaz & Khan, M. Riaz, 2022. "Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    15. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Daniele Mortari, 2023. "Representation of Fractional Operators Using the Theory of Functional Connections," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
    17. Artion Kashuri & Muhammad Samraiz & Gauhar Rahman & Zareen A. Khan, 2022. "Some New Beesack–Wirtinger-Type Inequalities Pertaining to Different Kinds of Convex Functions," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    18. Machado, J. A. Tenreiro & Lopes, António M., 2016. "The N-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 130-138.
    19. Ayşegül Daşcıoğlu & Serpil Salınan, 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations," Mathematics, MDPI, vol. 7(1), pages 1-10, January.
    20. Maria de Jesus Estudillo-Ayala & Hugo Aguirre-Ramos & Juan Gabriel Avina-Cervantes & Jorge Mario Cruz-Duarte & Ivan Cruz-Aceves & Jose Ruiz-Pinales, 2020. "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters," Mathematics, MDPI, vol. 8(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:932-:d:1361827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.