IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p744-d355259.html
   My bibliography  Save this article

Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters

Author

Listed:
  • Maria de Jesus Estudillo-Ayala

    (School of Biological Systems and Technological Innovation, Benito Juárez Autonomous University of Oaxaca, Oaxaca 68020, Mexico)

  • Hugo Aguirre-Ramos

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Juan Gabriel Avina-Cervantes

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico
    Author thanks the Universidad de Guanajuato by the financial support of the APC.)

  • Jorge Mario Cruz-Duarte

    (Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico)

  • Ivan Cruz-Aceves

    (CONACYT Research-Fellow, Center for Research in Mathematics (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico)

  • Jose Ruiz-Pinales

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

Abstract

All around the world, partial or total blindness has become a direct consequence of diabetes and hypertension. Visual disorders related to these diseases require automatic and specialized methods to detect early malformations, artifacts, or irregular structures for helping specialists in the diagnosis. This study presents an innovative methodology for detecting and evaluating retinopathies, particularly microaneurysm and hemorrhages. The method is based on a multidirectional Fractional-Order Gaussian Filters tuned by the Differential Evolution algorithm. The contrast of the microaneurysms and hemorrhages, regarding the background, is improved substantially. After that, these structures are extracted using the Kittler thresholding method under additional considerations. Then, candidate lesions are detected by removing the blood vessels and fovea pixels in the resulting image. Finally, candidate lesions are classified according to its size, shape, and intensity properties via Support Vector Machines with a radial basis function kernel. The proposed method is evaluated by using the publicly available database MESSIDOR for detecting microaneurysms. The numerical results are summarized by the averaged binary metrics of accuracy, sensitivity, and specificity giving the performance values of 0.9995, 0.7820 and 0.9998, respectively.

Suggested Citation

  • Maria de Jesus Estudillo-Ayala & Hugo Aguirre-Ramos & Juan Gabriel Avina-Cervantes & Jorge Mario Cruz-Duarte & Ivan Cruz-Aceves & Jose Ruiz-Pinales, 2020. "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:744-:d:355259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aguirre-Ramos, Hugo & Avina-Cervantes, Juan Gabriel & Cruz-Aceves, Ivan & Ruiz-Pinales, José & Ledesma, Sergio, 2018. "Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 568-587.
    2. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo López-Ruiz, 2022. "Mathematical Biology: Modeling, Analysis, and Simulations," Mathematics, MDPI, vol. 10(20), pages 1-2, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    2. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    3. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    4. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    5. Mudassir Shams & Bruno Carpentieri, 2023. "On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    6. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    7. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    9. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    10. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Daniele Mortari, 2023. "Representation of Fractional Operators Using the Theory of Functional Connections," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
    12. Machado, J. A. Tenreiro & Lopes, António M., 2016. "The N-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 130-138.
    13. Ayşegül Daşcıoğlu & Serpil Salınan, 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations," Mathematics, MDPI, vol. 7(1), pages 1-10, January.
    14. Manuel D. Ortigueira, 2022. "A New Look at the Initial Condition Problem," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    15. Meshach Kumar & Utkal Mehta & Giansalvo Cirrincione, 2023. "A Novel Approach to Modeling Incommensurate Fractional Order Systems Using Fractional Neural Networks," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
    16. Duarte Valério & Manuel D. Ortigueira & António M. Lopes, 2022. "How Many Fractional Derivatives Are There?," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    17. Mohra Zayed & Mahmoud Abul-Ez & Mohamed Abdalla & Nasser Saad, 2020. "On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials," Mathematics, MDPI, vol. 8(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:744-:d:355259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.