IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4772-d1288050.html
   My bibliography  Save this article

Representation of Fractional Operators Using the Theory of Functional Connections

Author

Listed:
  • Daniele Mortari

    (Aerospace Engineering, Texas A&M University, College Station, TX 77845-3141, USA)

Abstract

This work considers fractional operators (derivatives and integrals) as surfaces f ( x , α ) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals.

Suggested Citation

  • Daniele Mortari, 2023. "Representation of Fractional Operators Using the Theory of Functional Connections," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4772-:d:1288050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    2. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    3. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    5. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    6. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    7. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    8. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    9. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    10. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    11. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    12. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    13. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    14. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    15. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    16. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.
    17. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    18. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    20. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4772-:d:1288050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.