IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2130-d1138133.html
   My bibliography  Save this article

Modified BIC Criterion for Model Selection in Linear Mixed Models

Author

Listed:
  • Hang Lai

    (Business Program, University of Guelph-Humber, Toronto, ON M9W 5L7, Canada)

  • Xin Gao

    (Department of Mathematics & Statistics, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada)

Abstract

Linear mixed-effects models are widely used in applications to analyze clustered, hierarchical, and longitudinal data. Model selection in linear mixed models is more challenging than that of linear models as the parameter vector in a linear mixed model includes both fixed effects and variance component parameters. When selecting the variance components of the random effects, the variance of the random effects must be non-negative and the parameters may lie on the boundary of the parameter space. Therefore, classical model selection methods cannot be directly used to handle this situation. In this article, we propose a modified BIC for model selection with linear mixed-effects models that can solve the case when the variance components are on the boundary of the parameter space. Through the simulation results, we found that the modified BIC performed better than the regular BIC in most cases for linear mixed models. The modified BIC was also applied to a real dataset to choose the most-appropriate model.

Suggested Citation

  • Hang Lai & Xin Gao, 2023. "Modified BIC Criterion for Model Selection in Linear Mixed Models," Mathematics, MDPI, vol. 11(9), pages 1-26, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2130-:d:1138133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baey, Charlotte & Cournède, Paul-Henry & Kuhn, Estelle, 2019. "Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 107-122.
    2. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    3. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    4. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    5. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    6. Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
    7. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    8. Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    2. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    3. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    4. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    5. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    6. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    7. Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
    8. Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
    9. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    10. Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    11. Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020. "What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC," Papers 2006.06274, arXiv.org, revised Aug 2022.
    12. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    13. Daniel R. Kowal, 2023. "Subset selection for linear mixed models," Biometrics, The International Biometric Society, vol. 79(3), pages 1853-1867, September.
    14. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    15. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    16. Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    17. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    18. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    19. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    20. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2130-:d:1138133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.