IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i4p773-789.html
   My bibliography  Save this article

On the behaviour of marginal and conditional AIC in linear mixed models

Author

Listed:
  • Sonja Greven
  • Thomas Kneib

Abstract

In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion, aic , have been used, based either on the marginal or on the conditional distribution. We show that the marginal aic is not an asymptotically unbiased estimator of the Akaike information, and favours smaller models without random effects. For the conditional aic , we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that can lead to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional aic , which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package (R Development Core Team, 2010) is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia. Copyright 2010, Oxford University Press.

Suggested Citation

  • Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:773-789
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq042
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:773-789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.