IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v198y2023ics0047259x23000763.html
   My bibliography  Save this article

Uniformly valid inference based on the Lasso in linear mixed models

Author

Listed:
  • Kramlinger, Peter
  • Schneider, Ulrike
  • Krivobokova, Tatyana

Abstract

Linear mixed models (LMMs) are suitable for clustered data and are common in biometrics, medicine, survey statistics, and many other fields. In those applications, it is essential to carry out valid inference after selecting a subset of the available variables. We construct confidence sets for the fixed effects in Gaussian LMMs that are based on Lasso-type estimators. Aside from providing confidence regions, this also allows for quantification of the joint uncertainty of both variable selection and parameter estimation in the procedure. To show that the resulting confidence sets for the fixed effects are uniformly valid over the parameter spaces of both the regression coefficients and the covariance parameters, we also prove the novel result on uniform Cramér consistency of the restricted maximum likelihood (REML) estimators of the covariance parameters. The superiority of the constructed confidence sets to naïve post-selection procedures is validated in simulations and illustrated with a study of the acid-neutralization capacity of lakes in the United States.

Suggested Citation

  • Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000763
    DOI: 10.1016/j.jmva.2023.105230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    2. Rügamer, David & Baumann, Philipp F.M. & Greven, Sonja, 2022. "Selective inference for additive and linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    4. Lynn LaMotte, 2007. "A direct derivation of the REML likelihood function," Statistical Papers, Springer, vol. 48(2), pages 321-327, April.
    5. Ali Charkhi & Gerda Claeskens, 2018. "Asymptotic post-selection inference for the Akaike information criterion," Biometrika, Biometrika Trust, vol. 105(3), pages 645-664.
    6. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    7. Cressie, N. & Lahiri, S. N., 1993. "The Asymptotic Distribution of REML Estimators," Journal of Multivariate Analysis, Elsevier, vol. 45(2), pages 217-233, May.
    8. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    9. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    2. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    3. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    4. Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
    5. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.
    6. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    7. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    8. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    9. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    10. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    11. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    12. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.
    13. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    14. Bo Sun & Siyuan Cheng & Jingdong Xie & Xin Sun, 2022. "Identification of Generators’ Economic Withholding Behavior Based on a SCAD-Logit Model in Electricity Spot Market," Energies, MDPI, vol. 15(11), pages 1-23, June.
    15. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    16. Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.
    17. Peirong Xu & Lixing Zhu & Yi Li, 2014. "Ultrahigh dimensional time course feature selection," Biometrics, The International Biometric Society, vol. 70(2), pages 356-365, June.
    18. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    19. Tino Werner, 2022. "Asymptotic linear expansion of regularized M-estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 167-194, February.
    20. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.