IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i4p1553-1567.html
   My bibliography  Save this article

Plug‐in machine learning for partially linear mixed‐effects models with repeated measurements

Author

Listed:
  • Corinne Emmenegger
  • Peter Bühlmann

Abstract

Traditionally, spline or kernel approaches in combination with parametric estimation are used to infer the linear coefficient (fixed effects) in a partially linear mixed‐effects model for repeated measurements. Using machine learning algorithms allows us to incorporate complex interaction structures, nonsmooth terms, and high‐dimensional variables. The linear variables and the response are adjusted nonparametrically for the nonlinear variables, and these adjusted variables satisfy a linear mixed‐effects model in which the linear coefficient can be estimated with standard linear mixed‐effects methods. We prove that the estimated fixed effects coefficient converges at the parametric rate, is asymptotically Gaussian distributed, and semiparametrically efficient. Two simulation studies demonstrate that our method outperforms a penalized regression spline approach in terms of coverage. We also illustrate our proposed approach on a longitudinal dataset with HIV‐infected individuals. Software code for our method is available in the R‐package dmlalg.

Suggested Citation

  • Corinne Emmenegger & Peter Bühlmann, 2023. "Plug‐in machine learning for partially linear mixed‐effects models with repeated measurements," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1553-1567, December.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:4:p:1553-1567
    DOI: 10.1111/sjos.12639
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12639
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Chiara Masci & Anna Maria Paganoni & Francesca Ieva, 2019. "Semiparametric mixed effects models for unsupervised classification of Italian schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1313-1342, October.
    3. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    4. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    5. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    6. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    7. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.
    8. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    9. Guo You Qin & Zhong Yi Zhu, 2009. "Robustified Maximum Likelihood Estimation in Generalized Partial Linear Mixed Model for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(1), pages 52-59, March.
    10. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    11. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.
    12. Sehee Kim & Donglin Zeng & Jeremy M. G. Taylor, 2017. "Joint partially linear model for longitudinal data with informative drop-outs," Biometrics, The International Biometric Society, vol. 73(1), pages 72-82, March.
    13. Hua Liang, 2009. "Generalized partially linear mixed-effects models incorporating mismeasured covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 27-46, March.
    14. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    15. Daowen Zhang, 2004. "Generalized Linear Mixed Models with Varying Coefficients for Longitudinal Data," Biometrics, The International Biometric Society, vol. 60(1), pages 8-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    4. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    5. Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
    6. Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
    7. Tang, Nian-Sheng & Duan, Xing-De, 2012. "A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4348-4365.
    8. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    9. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    10. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    11. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    12. Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
    13. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    15. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    17. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    18. Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
    19. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    20. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:4:p:1553-1567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.