IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v160y2021ics016794732100058x.html
   My bibliography  Save this article

Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random

Author

Listed:
  • Wei, Yuting
  • Wang, Qihua
  • Duan, Xiaogang
  • Qin, Jing

Abstract

A model selection problem for the conditional probability function of the response variable Y given the covariable vector (X,Z) is considered under the case where X is missing at random. And two novel model selection criteria are suggested. It is shown that the model selection by these two criteria is consistent and that the population parameter estimators, corresponding to the selected model, are also consistent and asymptotically normal. Extensive simulation studies are conducted to investigate the finite-sample performances of the proposed two criteria and a thorough comparison is made with some related model selection strategies. Moreover, two real data analyses are presented for illustrating the practical application of the proposed two criteria.

Suggested Citation

  • Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:csdana:v:160:y:2021:i:c:s016794732100058x
    DOI: 10.1016/j.csda.2021.107224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732100058X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models 2 volume set," Cambridge Books, Cambridge University Press, number 9780521478373, July.
    2. Pircalabelu, Eugen & Claeskens, Gerda & Waldorp, Lourens J., 2015. "Constructing Graphical Models via the Focused Information Criterion," LIDAM Reprints ISBA 2015043, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
    4. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    5. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, October.
    6. Maarten Jansen, 2014. "Information criteria for variable selection under sparsity," Biometrika, Biometrika Trust, vol. 101(1), pages 37-55.
    7. Ibrahim, Joseph G. & Zhu, Hongtu & Tang, Niansheng, 2008. "Model Selection Criteria for Missing-Data Problems Using the EM Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1648-1658.
    8. Qihua Wang & J. N. K. Rao, 2002. "Empirical Likelihood‐based Inference in Linear Models with Missing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 563-576, September.
    9. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    10. Pircalabelu, Eugen & Claeskens, Gerda & Waldorp, Lourens J., 2015. "A focused information criterion for graphical models," LIDAM Reprints ISBA 2015044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    12. Qihua Wang, 2002. "Empirical likelihood-based inference in linear errors-in-covariables models with validation data," Biometrika, Biometrika Trust, vol. 89(2), pages 345-358, June.
    13. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    14. Jiming Jiang & Thuan Nguyen & J. Sunil Rao, 2015. "The E-MS Algorithm: Model Selection With Incomplete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1136-1147, September.
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    2. Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
    3. C. Gouriéroux & A. Monfort & J.‐M. Zakoïan, 2019. "Consistent Pseudo‐Maximum Likelihood Estimators and Groups of Transformations," Econometrica, Econometric Society, vol. 87(1), pages 327-345, January.
    4. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    5. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    6. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    7. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    8. Bo E. Honoré & Luojia Hu, 2023. "The COVID-19 pandemic and Asian American employment," Empirical Economics, Springer, vol. 64(5), pages 2053-2083, May.
    9. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    10. Luis Orea & David Roibás & Alan Wall, 2004. "Choosing the Technical Efficiency Orientation to Analyze Firms' Technology: A Model Selection Test Approach," Journal of Productivity Analysis, Springer, vol. 22(1), pages 51-71, July.
    11. Gerhard, Frank & Hess, Dieter & Pohlmeier, Winfried, 1998. "What a Difference a Day Makes: On the Common Market Microstructure of Trading Days," CoFE Discussion Papers 98/01, University of Konstanz, Center of Finance and Econometrics (CoFE).
    12. Alexandre Petkovic & David Veredas, 2009. "Aggregation of linear models for panel data," Working Papers ECARES 2009-012, ULB -- Universite Libre de Bruxelles.
    13. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    14. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    15. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    16. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    17. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    18. Shapiro, Dmitry & Shi, Xianwen & Zillante, Artie, 2014. "Level-k reasoning in a generalized beauty contest," Games and Economic Behavior, Elsevier, vol. 86(C), pages 308-329.
    19. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    20. Chesher, Andrew & Dhaene, Geert & Gouriéroux, Christian & Scaillet, Olivier, 1999. "Bartlett Identities Tests," LIDAM Discussion Papers IRES 1999019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:160:y:2021:i:c:s016794732100058x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.