Performance Analysis of Long Short-Term Memory Predictive Neural Networks on Time Series Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Adrian Sergiu Darabant & Diana Borza & Radu Danescu, 2021. "Recognizing Human Races through Machine Learning—A Multi-Network, Multi-Features Study," Mathematics, MDPI, vol. 9(2), pages 1-19, January.
- Mohamed Abdel-Basset & Hossam Hawash & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed & Karam M. Sallam, 2022. "Interpretable Deep Learning for Discriminating Pneumonia from Lung Ultrasounds," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
- Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
- Amin Ullah & Khalid Mahmood Malik & Abdul Khader Jilani Saudagar & Muhammad Badruddin Khan & Mozaherul Hoque Abul Hasanat & Abdullah AlTameem & Mohammed AlKhathami & Muhammad Sajjad, 2022. "COVID-19 Genome Sequence Analysis for New Variant Prediction and Generation," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
- Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Christopher Bennett & Rodney A. Stewart & Junwei Lu, 2014. "Autoregressive with Exogenous Variables and Neural Network Short-Term Load Forecast Models for Residential Low Voltage Distribution Networks," Energies, MDPI, vol. 7(5), pages 1-23, April.
- João Antunes Rodrigues & José Torres Farinha & Mateus Mendes & Ricardo J. G. Mateus & António J. Marques Cardoso, 2022. "Comparison of Different Features and Neural Networks for Predicting Industrial Paper Press Condition," Energies, MDPI, vol. 15(17), pages 1-16, August.
- Sanda-Maria Avram & Mihai Oltean, 2022. "A Comparison of Several AI Techniques for Authorship Attribution on Romanian Texts," Mathematics, MDPI, vol. 10(23), pages 1-35, December.
- Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
- Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sen Zheng & Chongshi Gu & Chenfei Shao & Yating Hu & Yanxin Xu & Xiaoyu Huang, 2023. "A Novel Prediction Model for Seawall Deformation Based on CPSO-WNN-LSTM," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
- Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
- Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
- Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
- Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
- SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
- Vladimir J. Alarcon, 2021. "Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
- Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
- Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
- Anshuman Satapathy & Niranjan Nayak & Tanmoy Parida, 2022. "Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network," Energies, MDPI, vol. 15(23), pages 1-35, November.
- Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
- Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
- Liu, Xiufeng & Nielsen, Per Sieverts, 2016. "A hybrid ICT-solution for smart meter data analytics," Energy, Elsevier, vol. 115(P3), pages 1710-1722.
- Oksana Mandrikova & Yuryi Polozov & Nataly Zhukova & Yulia Shichkina, 2022. "Approximation and Analysis of Natural Data Based on NARX Neural Networks Involving Wavelet Filtering," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
- Kayode Ayankoya & Andre P. Calitz & Jean H. Greyling, 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Taylor & Francis Journals, vol. 55(4), pages 483-508, October.
- Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
- Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
- Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models," Energies, MDPI, vol. 13(17), pages 1-12, August.
- Shengyang Lu & Yu Zhu & Lihu Dong & Guangyu Na & Yan Hao & Guanfeng Zhang & Wuyang Zhang & Shanshan Cheng & Junyou Yang & Yuqiu Sui, 2022. "Small-Signal Stability Research of Grid-Connected Virtual Synchronous Generators," Energies, MDPI, vol. 15(19), pages 1-17, September.
More about this item
Keywords
long short-term memory (LSTM); recurrent neural network (RNN); teacher forcing; prediction; performance analysis; benchmarking; machine learning; Tennessee Eastman process; time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1432-:d:1098541. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.