Comparison of Different Features and Neural Networks for Predicting Industrial Paper Press Condition
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
- Jonsson, Patrik, 1999. "Company-wide integration of strategic maintenance: An empirical analysis," International Journal of Production Economics, Elsevier, vol. 60(1), pages 155-164, April.
- Carnero, MaCarmen, 2006. "An evaluation system of the setting up of predictive maintenance programmes," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 945-963.
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roland Bolboacă & Piroska Haller, 2023. "Performance Analysis of Long Short-Term Memory Predictive Neural Networks on Time Series Data," Mathematics, MDPI, vol. 11(6), pages 1-35, March.
- Nurkamilya Daurenbayeva & Almas Nurlanuly & Lyazzat Atymtayeva & Mateus Mendes, 2023. "Survey of Applications of Machine Learning for Fault Detection, Diagnosis and Prediction in Microclimate Control Systems," Energies, MDPI, vol. 16(8), pages 1-21, April.
- João Antunes Rodrigues & Alexandre Martins & Mateus Mendes & José Torres Farinha & Ricardo J. G. Mateus & Antonio J. Marques Cardoso, 2022. "Automatic Risk Assessment for an Industrial Asset Using Unsupervised and Supervised Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Alexandre Martins & Balduíno Mateus & Inácio Fonseca & José Torres Farinha & João Rodrigues & Mateus Mendes & António Marques Cardoso, 2023. "Predicting the Health Status of a Pulp Press Based on Deep Neural Networks and Hidden Markov Models," Energies, MDPI, vol. 16(6), pages 1-26, March.
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
- Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
- Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
- Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
- Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
- Yakai Qiao & Hui Chen & Bo Fu, 2024. "Multi-Wind Turbine Wind Speed Prediction Based on Weighted Diffusion Graph Convolution and Gated Attention Network," Energies, MDPI, vol. 17(7), pages 1-15, March.
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Sharma, Rajneesh, 2023. "An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction," Energy, Elsevier, vol. 278(C).
- Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.
- Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
- Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
- Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
More about this item
Keywords
maintenance; neural networks; XGBoost; forecast; sensor prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6308-:d:901088. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.