IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp1100-1108.html
   My bibliography  Save this article

Modelling urban energy requirements using open source data and models

Author

Listed:
  • Alhamwi, Alaa
  • Medjroubi, Wided
  • Vogt, Thomas
  • Agert, Carsten

Abstract

The transition towards sustainable and self-sufficient cities requires extensive knowledge of the electricity requirements for diverse consumers that interact in a temporal and geospatial platform. Energy models contribute to the strategic planning of future urban energy systems by providing relevant insights and scientific recommendations. In this context, energy policy advice have to entail transparency of the tools and models used as well as their respective input datasets which are generally neither open nor publicly available. The aim of this contribution is, to model urban energy requirements, namely local electricity consumption and on-site renewable power generation, using solely open source data and models. A systematic approach for a bottom-up simulation of urban electricity supply and demand down to the building unit level is developed here. The methodology combines spatial parameters of urban geometries and settlements and links them to real-world data using Geographic Information Systems. The developed model is showcased and validated for the city of Oldenburg (Germany). Quarter-hourly time series of electricity demand and supply are extracted for each existing urban unit such as buildings and streets. A regression analysis has been performed to validate the model outputs against measured data. Accordingly, up to 94% of the variance of the simulated urban electricity demand and supply are predictable from the measured datasets. The resulting demand and supply profiles have been used to investigate storage needs in urban areas. Furthermore, the model presented here offers a detailed load representation of different urban consumers’ segmentation. It determines also the configurations of on-site urban renewable energy mixes at which the share of electricity from grid and/or storage are at its minimum. Preliminary results show that, high levels of urban energy autarky could be achieved for a specific combination of local renewable energy sources.

Suggested Citation

  • Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1100-1108
    DOI: 10.1016/j.apenergy.2018.09.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    2. Brownsword, R.A. & Fleming, P.D. & Powell, J.C. & Pearsall, N., 2005. "Sustainable cities - modelling urban energy supply and demand," Applied Energy, Elsevier, vol. 82(2), pages 167-180, October.
    3. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    4. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2017. "Impact of service sector loads on renewable resource integration," Applied Energy, Elsevier, vol. 205(C), pages 1311-1326.
    5. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    6. Upshaw, Charles R. & Rhodes, Joshua D. & Webber, Michael E., 2017. "Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas," Applied Energy, Elsevier, vol. 186(P3), pages 492-508.
    7. Lis P. & Mazurkiewicz J., 2015. "Combating energy poverty in the social housing stock," Економічний вісник Донбасу Экономический вестник Донбасса, CyberLeninka;Институт экономики промышленности НАН Украины, issue 4 (42), pages 24-32.
    8. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    9. Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
    10. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
    11. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    12. Chinnasamy Palanichamy & Palanichamy Naveen & Wong Kiing Ing & Michael Kobina Danquah & Jayaraman Indumath, 2015. "Energy Efficiency Enhancement of Fossil-Fuelled Power Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 765-771.
    13. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    14. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    15. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    16. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    17. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    18. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    19. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    20. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2009. "Energy demand models for policy formulation : a comparative study of energy demand models," Policy Research Working Paper Series 4866, The World Bank.
    21. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    22. Frauke Wiese & Gesine Bökenkamp & Clemens Wingenbach & Olav Hohmeyer, 2014. "An open source energy system simulation model as an instrument for public participation in the development of strategies for a sustainable future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 490-504, September.
    23. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    24. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    25. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuat, Arthur & Terrier, Cédric & Schnidrig, Jonas & Maréchal, François, 2024. "Identification of typical district configurations: A two-step global sensitivity analysis framework," Energy, Elsevier, vol. 296(C).
    2. Wu, Wenbo & Dong, Bing & Wang, Qi (Ryan) & Kong, Meng & Yan, Da & An, Jingjing & Liu, Yapan, 2020. "A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption," Applied Energy, Elsevier, vol. 278(C).
    3. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Chévez, Pedro Joaquín & Martini, Irene & Discoli, Carlos, 2019. "Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability," Applied Energy, Elsevier, vol. 237(C), pages 751-778.
    5. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Cédric Terrier & Joseph René Hubert Loustau & Dorsan Lepour & François Maréchal, 2024. "From Local Energy Communities towards National Energy System: A Grid-Aware Techno-Economic Analysis," Energies, MDPI, vol. 17(4), pages 1-16, February.
    7. Tukia, Toni & Uimonen, Semen & Siikonen, Marja-Liisa & Donghi, Claudio & Lehtonen, Matti, 2019. "Modeling the aggregated power consumption of elevators – the New York city case study," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Ranalli, Joseph & Alhamwi, Alaa, 2020. "Configurations of renewable power generation in cities using open source approaches: With Philadelphia case study," Applied Energy, Elsevier, vol. 269(C).
    9. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Robert Bauer & Dominik Schopf & Grégoire Klaus & Raimund Brotsack & Javier Valdes, 2022. "Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria," Energies, MDPI, vol. 15(7), pages 1-22, April.
    11. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    12. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    13. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    14. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    2. Wang, Endong, 2017. "Decomposing core energy factor structure of U.S. residential buildings through principal component analysis with variable clustering on high-dimensional mixed data," Applied Energy, Elsevier, vol. 203(C), pages 858-873.
    3. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    5. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    6. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    7. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Jennings, Mark & Fisk, David & Shah, Nilay, 2014. "Modelling and optimization of retrofitting residential energy systems at the urban scale," Energy, Elsevier, vol. 64(C), pages 220-233.
    9. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    10. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    11. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
    12. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    13. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2019. "Comparison of Open Source Power Grid Models—Combining a Mathematical, Visual and Electrical Analysis in an Open Source Tool," Energies, MDPI, vol. 12(24), pages 1-15, December.
    14. Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
    15. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    16. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    17. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    19. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1100-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.