IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p363-d474079.html
   My bibliography  Save this article

Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network

Author

Listed:
  • Vladimir J. Alarcon

    (Civil Engineering Department, Universidad Diego Portales, Santiago 8370191, Chile)

Abstract

Estimating and forecasting suspended sediments concentrations in streams constitutes a valuable asset for sustainable land management. This research presents the development of a non-linear autoregressive exogenous neural network (NARX) for forecasting sediment concentrations at the exit of Francia Creek watershed (Valparaiso, Chile). Details are presented on input data selection, data splitting, selection of model architecture, determination of model structure, NARX training (optimization of model parameters), and model validation (hindcasting and forecasting). The study explored if the developed artificial neural network model is valid for forecasting daily suspended sediment concentrations for a complete year, capturing seasonal trends, and maximum and baseflow concentrations. Francia Creek watershed covers approximately 3.24 km 2 . Land cover within the catchment consists mainly of native and exotic vegetation, eroded soil, and urban areas. Input data consisting of precipitation and stream flow time-series were fed to a NARX network for forecasting daily suspended sediments (SST) concentrations for years 2013–2014, and hindcasting for years 2008–2010. Training of the network was performed with daily SST, precipitation, and flow data from years 2012 and 2013. The resulting NARX net consisted of an open-loop, 12-node hidden layer, 100 iterations, using Bayesian regularization backpropagation. Hindcasting of daily and monthly SST concentrations for years 2008 through 2010 was successful. Daily SST concentrations for years 2013 and 2014 were forecasted successfully for baseflow conditions (R 2 = 0.73, NS = 0.71, and Kling-Gupta efficiency index (K-G) = 0.84). Forecasting daily SST concentrations for year 2014 was within acceptable statistical fit and error margins (R 2 = 0.53, NS = 0.47, K-G = 0.60, d = 0.82). Forecasting of monthly maximum SST concentrations for the two-year period (2013 and 2014) was also successful (R 2 = 0.69, NS = 0.60, K-G = 0.54, d = 0.84).

Suggested Citation

  • Vladimir J. Alarcon, 2021. "Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:363-:d:474079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    2. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    3. Vladimir J. Alarcon & Gretchen F. Sassenrath, 2017. "Nitrate, Total Ammonia, and Total Suspended Sediments Modeling for the Mobile River Watershed," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 8(2), pages 20-31, April.
    4. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    5. V. Alarcon & D. Johnson & W. McAnally & J. Zwaag & D. Irby & J. Cartwright, 2014. "Nested Hydrodynamic Modeling of a Coastal River Applying Dynamic-Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3227-3240, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
    2. Fernando Esteban Mardonez Meza & Vladimir J. Alarcon, 2023. "Management scenarios for reducing waterlogging hazard in Valparaiso, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1463-1485, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    2. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    3. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    5. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    6. SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    7. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    8. Roland Bolboacă & Piroska Haller, 2023. "Performance Analysis of Long Short-Term Memory Predictive Neural Networks on Time Series Data," Mathematics, MDPI, vol. 11(6), pages 1-35, March.
    9. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    10. Anshuman Satapathy & Niranjan Nayak & Tanmoy Parida, 2022. "Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network," Energies, MDPI, vol. 15(23), pages 1-35, November.
    11. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    12. Oksana Mandrikova & Yuryi Polozov & Nataly Zhukova & Yulia Shichkina, 2022. "Approximation and Analysis of Natural Data Based on NARX Neural Networks Involving Wavelet Filtering," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    13. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    14. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    15. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models," Energies, MDPI, vol. 13(17), pages 1-12, August.
    16. Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
    17. Sivakavi Naga Venkata Bramareswara Rao & Venkata Pavan Kumar Yellapragada & Kottala Padma & Darsy John Pradeep & Challa Pradeep Reddy & Mohammad Amir & Shady S. Refaat, 2022. "Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods," Energies, MDPI, vol. 15(17), pages 1-25, August.
    18. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    19. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:363-:d:474079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.