IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p366-d1031329.html
   My bibliography  Save this article

Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants

Author

Listed:
  • Hector del Pozo Gonzalez

    (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2 a pl., 08930 Sant Adrià de Besòs, Spain)

  • Marc Torrell

    (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2 a pl., 08930 Sant Adrià de Besòs, Spain)

  • Lucile Bernadet

    (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2 a pl., 08930 Sant Adrià de Besòs, Spain)

  • Fernando D. Bianchi

    (Instituto Tecnológico Buenos Aires (ITBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Iguazú 341, Buenos Aires C1437, Argentina)

  • Lluís Trilla

    (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2 a pl., 08930 Sant Adrià de Besòs, Spain)

  • Albert Tarancón

    (Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain)

  • Jose Luis Domínguez-García

    (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2 a pl., 08930 Sant Adrià de Besòs, Spain)

Abstract

Solid oxide technology has gained importance due to its higher efficiencies compared to other current hydrogen technologies. The reversible mode allows working with both technologies (SOEC-SOFC), which makes it very attractive for mixed operations, both storage and generation, increasing its usage and therefore the viability of the technology implementation. To improve the performance of reversible stacks, developing adequate control strategies is of great importance. In order to design these strategies, suitable models are needed. These control-oriented models should be simple for an efficient controller design, but also they should include all phenomena that can be affected by the control law. This article introduces a control-oriented modeling of a reversible solid oxide stack (rSOS) for the implementation of control strategies considering thermal and degradation effects. The model is validated with experimental data of a 1.5 kW laboratory prototype, analyzing both polarization curves and dynamic responses to different current profiles and compositions. An error of less than 3% between the model and experimental responses has been obtained, demonstrating the validity of the proposed control-oriented model. The proposed model allows performing new and deeper analysis of the role of reversible solid oxide cells in 24/7 generation plants with renewable energy sources.

Suggested Citation

  • Hector del Pozo Gonzalez & Marc Torrell & Lucile Bernadet & Fernando D. Bianchi & Lluís Trilla & Albert Tarancón & Jose Luis Domínguez-García, 2023. "Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:366-:d:1031329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    2. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    3. Khan, M.S. & Xu, X. & Knibbe, R. & Zhu, Z., 2021. "Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
    2. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    3. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    4. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    5. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    7. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    8. Zhao, Kai & Lu, Jiaxin & Le, Long & Coyle, Chris & Marina, Olga A. & Huang, Kevin, 2024. "A high-performance intermediate temperature reversible solid oxide cell with a new barrier layer free oxygen electrode," Applied Energy, Elsevier, vol. 361(C).
    9. Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
    10. Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
    11. Choe, Changgwon & Cheon, Seunghyun & Gu, Jiwon & Lim, Hankwon, 2022. "Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    13. Zhu, Pengfei & Wu, Zhen & Wang, Huan & Yan, Hongli & Li, Bo & Yang, Fusheng & Zhang, Zaoxiao, 2022. "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, Elsevier, vol. 322(C).
    14. Siyu Lu & Man Zhang & Jie Wu & Wei Kong, 2022. "Performance Investigation on Mono-Block-Layer Build Type Solid Oxide Fuel Cells with a Vertical Rib Design," Energies, MDPI, vol. 15(3), pages 1-12, January.
    15. Botta, G. & Mor, R. & Patel, H. & Aravind, P.V., 2018. "Thermodynamic evaluation of bi-directional solid oxide cell systems including year-round cumulative exergy analysis," Applied Energy, Elsevier, vol. 226(C), pages 1100-1118.
    16. Hong, Junsung & Grimes, Jerren & Cox, Dalton & Barnett, Scott A., 2024. "Life testing of 10 cm × 10 cm fuel-electrode-supported solid oxide cells in reversible operation," Applied Energy, Elsevier, vol. 355(C).
    17. Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
    18. Shao, Qian & Gao, Enlai & Mara, Thierry & Hu, Heng & Liu, Tong & Makradi, Ahmed, 2020. "Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions," Applied Energy, Elsevier, vol. 260(C).
    19. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    20. Königshofer, Benjamin & Boškoski, Pavle & Nusev, Gjorgji & Koroschetz, Markus & Hochfellner, Martin & Schwaiger, Marcel & Juričić, Đani & Hochenauer, Christoph & Subotić, Vanja, 2021. "Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:366-:d:1031329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.