Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
- Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
- Khan, M.S. & Xu, X. & Knibbe, R. & Zhu, Z., 2021. "Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
- Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
- Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
- Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
- Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
- Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
- Zhao, Kai & Lu, Jiaxin & Le, Long & Coyle, Chris & Marina, Olga A. & Huang, Kevin, 2024. "A high-performance intermediate temperature reversible solid oxide cell with a new barrier layer free oxygen electrode," Applied Energy, Elsevier, vol. 361(C).
- Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
- Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
- Choe, Changgwon & Cheon, Seunghyun & Gu, Jiwon & Lim, Hankwon, 2022. "Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
- Zhu, Pengfei & Wu, Zhen & Wang, Huan & Yan, Hongli & Li, Bo & Yang, Fusheng & Zhang, Zaoxiao, 2022. "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, Elsevier, vol. 322(C).
- Siyu Lu & Man Zhang & Jie Wu & Wei Kong, 2022. "Performance Investigation on Mono-Block-Layer Build Type Solid Oxide Fuel Cells with a Vertical Rib Design," Energies, MDPI, vol. 15(3), pages 1-12, January.
- Botta, G. & Mor, R. & Patel, H. & Aravind, P.V., 2018. "Thermodynamic evaluation of bi-directional solid oxide cell systems including year-round cumulative exergy analysis," Applied Energy, Elsevier, vol. 226(C), pages 1100-1118.
- Hong, Junsung & Grimes, Jerren & Cox, Dalton & Barnett, Scott A., 2024. "Life testing of 10 cm × 10 cm fuel-electrode-supported solid oxide cells in reversible operation," Applied Energy, Elsevier, vol. 355(C).
- Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
- Shao, Qian & Gao, Enlai & Mara, Thierry & Hu, Heng & Liu, Tong & Makradi, Ahmed, 2020. "Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions," Applied Energy, Elsevier, vol. 260(C).
- Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
- Königshofer, Benjamin & Boškoski, Pavle & Nusev, Gjorgji & Koroschetz, Markus & Hochfellner, Martin & Schwaiger, Marcel & Juričić, Đani & Hochenauer, Christoph & Subotić, Vanja, 2021. "Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant," Applied Energy, Elsevier, vol. 283(C).
More about this item
Keywords
reversible solid oxide cells (rSOC); mathematical modeling; control-oriented modeling; thermal safety; hydrogen; stack degradation; experimental rSOC; solid oxide fuel cells; solid oxide electrolyzer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:366-:d:1031329. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.