IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008303.html
   My bibliography  Save this article

Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network

Author

Listed:
  • Zhu, Pengfei
  • Wu, Zhen
  • Wang, Huan
  • Yan, Hongli
  • Li, Bo
  • Yang, Fusheng
  • Zhang, Zaoxiao

Abstract

Ni particle coarsening is an important factor in deteriorating the durability of solid oxide fuel cell (SOFC) operations. In order to investigate the influence of Ni coarsening on SOFC performance, the transient multi-physical field model of SOFC was developed in this paper. The high operating temperature accelerates Ni particle growth and increases the attenuation rate of SOFC current density from 0.23%/kh at 650 °C to 2.6%/kh at 800 °C. The increase in the ratio of steam to carbon also intensifies the Ni particle coarsening process and deteriorates the transient performance of SOFC. Increasing YSZ particle diameter could hinder the growth of Ni particles and slowing down the increase rate of Ni particle diameter. Within the range of preset YSZ diameter dYSZ, increasing dYSZ reduces the attenuation rate and increases the average current density. Improving Ni phase fraction helps to reduce the attenuation rate of current density. Since multi-physical field (MPF) simulation needs long calculation time and it is difficult to achieve fast prediction, artificial neural network (ANN) is trained by the database generated by MPF. The mapping relationship between operating parameters, structural parameters and attenuation indexes is obtained. Finally, the attenuation performance of SOFC is optimized by genetic algorithm (GA) through data-driven method. The absolute average relative errors of all parameters in predicting attenuation rate and average current density are as low as 0.767% and 0.248%, which indicates the reliability of the ANN prediction. After optimization, the maximum current density is 5848 A·m−2 under operating voltage at 0.6 V when the attenuation rate requirement not exceeding 1% is satisfied. The combination of MPF simulation, ANN and GA provides a framework for fast performance prediction and optimization of strong nonlinear system.

Suggested Citation

  • Zhu, Pengfei & Wu, Zhen & Wang, Huan & Yan, Hongli & Li, Bo & Yang, Fusheng & Zhang, Zaoxiao, 2022. "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008303
    DOI: 10.1016/j.apenergy.2022.119508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    2. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    3. Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
    4. Yahya, Abir & Ferrero, Domenico & Dhahri, Hacen & Leone, Pierluigi & Slimi, Khalifa & Santarelli, Massimo, 2018. "Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model," Energy, Elsevier, vol. 142(C), pages 932-943.
    5. Afif, Ahmed & Radenahmad, Nikdalila & Cheok, Quentin & Shams, Shahriar & Kim, Jung H. & Azad, Abul K., 2016. "Ammonia-fed fuel cells: a comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 822-835.
    6. Ma, Ting & Yan, Min & Zeng, Min & Yuan, Jin-liang & Chen, Qiu-yang & Sundén, Bengt & Wang, Qiu-wang, 2015. "Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 152(C), pages 217-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Pengfei & Wu, Zhen & Yang, Yuchen & Wang, Huan & Li, Ruiqing & Yang, Fusheng & Zhang, Zaoxiao, 2023. "The dynamic response of solid oxide fuel cell fueled by syngas during the operating condition variations," Applied Energy, Elsevier, vol. 349(C).
    2. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    3. Jingxuan Peng & Dongqi Zhao & Yuanwu Xu & Xiaolong Wu & Xi Li, 2023. "Comprehensive Analysis of Solid Oxide Fuel Cell Performance Degradation Mechanism, Prediction, and Optimization Studies," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    2. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    3. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    4. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    5. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    6. Wang, Nan & Wang, Dongxuan & Xing, Yazhou & Shao, Limin & Afzal, Sadegh, 2020. "Application of co-evolution RNA genetic algorithm for obtaining optimal parameters of SOFC model," Renewable Energy, Elsevier, vol. 150(C), pages 221-233.
    7. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    9. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
    10. de Avila Ferreira, Tafarel & Wuillemin, Zacharie & Faulwasser, Timm & Salzmann, Christophe & Van herle, Jan & Bonvin, Dominique, 2019. "Enforcing optimal operation in solid-oxide fuel-cell systems," Energy, Elsevier, vol. 181(C), pages 281-293.
    11. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    12. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Yongqiu, 2023. "Thermodynamic, environmental, and exergoeconomic feasibility analyses and optimization of biomass gasifier-solid oxide fuel cell boosting a doable-flash binary geothermal cycle; a novel trigeneration ," Energy, Elsevier, vol. 265(C).
    13. Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
    14. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    15. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    17. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    18. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    19. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    20. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Dong, Peng, 2019. "Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight," Energy, Elsevier, vol. 185(C), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.