IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2330-d1148582.html
   My bibliography  Save this article

A Mathematical Study for the Transmission of Coronavirus Disease

Author

Listed:
  • Huda Abdul Satar

    (Department of Mathematics, College of Science, University of Baghdad, Baghdad 10071, Iraq)

  • Raid Kamel Naji

    (Department of Mathematics, College of Science, University of Baghdad, Baghdad 10071, Iraq)

Abstract

Globally, the COVID-19 pandemic’s development has presented significant societal and economic challenges. The carriers of COVID-19 transmission have also been identified as asymptomatic infected people. Yet, most epidemic models do not consider their impact when accounting for the disease’s indirect transmission. This study suggested and investigated a mathematical model replicating the spread of coronavirus disease among asymptomatic infected people. A study was conducted on every aspect of the system’s solution. The equilibrium points and the basic reproduction number were computed. The endemic equilibrium point and the disease-free equilibrium point had both undergone local stability analyses. A geometric technique was used to look into the global dynamics of the endemic point, whereas the Castillo-Chavez theorem was used to look into the global stability of the disease-free point. The system’s transcritical bifurcation at the disease-free point was discovered to exist. The system parameters were changed using the basic reproduction number’s sensitivity technique. Ultimately, a numerical simulation was used to apply the model to the population of Iraq in order to validate the findings and define the factors that regulate illness breakout.

Suggested Citation

  • Huda Abdul Satar & Raid Kamel Naji, 2023. "A Mathematical Study for the Transmission of Coronavirus Disease," Mathematics, MDPI, vol. 11(10), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2330-:d:1148582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kassa, Semu M. & Njagarah, John B.H. & Terefe, Yibeltal A., 2020. "Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Kaushik Dehingia & Ahmed A. Mohsen & Sana Abdulkream Alharbi & Reima Daher Alsemiry & Shahram Rezapour, 2022. "Dynamical Behavior of a Fractional Order Model for Within-Host SARS-CoV-2," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
    3. Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Thirthar, Ashraf Adnan & Naji, Raid Kamel & Bozkurt, Fatma & Yousef, Ali, 2021. "Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Olivares, Alberto & Staffetti, Ernesto, 2021. "Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Raid Kamel Naji & Reem Mudar Hussien, 2016. "The Dynamics of Epidemic Model with Two Types of Infectious Diseases and Vertical Transmission," Journal of Applied Mathematics, Hindawi, vol. 2016, pages 1-16, January.
    7. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiraporn Lamwong & Napasool Wongvanich & I-Ming Tang & Puntani Pongsumpun, 2023. "Optimal Control Strategy of a Mathematical Model for the Fifth Wave of COVID-19 Outbreak (Omicron) in Thailand," Mathematics, MDPI, vol. 12(1), pages 1-31, December.
    2. Tierry Mitonsou Hounkonnou & Laure Gouba, 2024. "Differential Equations and Applications to COVID-19," Mathematics, MDPI, vol. 12(17), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    2. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    3. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    9. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    10. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    11. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    12. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    14. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    15. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    16. Cunwei Yang & Weiqing Wang & Fengying Li & Degang Yang, 2022. "One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    17. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    18. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    20. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2330-:d:1148582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.