IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp120-135.html
   My bibliography  Save this article

The Hawkes process with renewal immigration & its estimation with an EM algorithm

Author

Listed:
  • Wheatley, Spencer
  • Filimonov, Vladimir
  • Sornette, Didier

Abstract

In its original form, the self-excited Hawkes process is a cluster process where immigrants follow a Poisson process, and each immigrant may form a cluster of multi-generational offspring. The Hawkes process is generalized by replacing the Poisson immigration process with a renewal process. This generalization makes direct MLE impossible. Thus, two EM algorithms are introduced: The first extends the existing EM algorithm for the Hawkes process to consider renewal immigration. It treats the entire branching structure–which points are immigrants, and which point is the parent of each offspring–as missing data. The second algorithm reduces the amount of missing data, considering only if a point is an immigrant or not as missing data. This significantly reduces computational complexity and memory requirements, enabling estimation on larger datasets. Both algorithms are found to perform well in simulation studies. A case study shows that the Hawkes process with renewal immigration is superior to the standard Hawkes process for the modeling of high-frequency price fluctuations. Further, it is demonstrated that misspecification of the immigration process can bias estimation of the branching ratio, which quantifies the degree of self-excitation.

Suggested Citation

  • Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:120-135
    DOI: 10.1016/j.csda.2015.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001954
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    2. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    3. V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
    4. Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
    5. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    6. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    7. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
    9. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
    10. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    11. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    12. Gusto Gaelle & Schbath Sophie, 2005. "FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    2. Stindl, Tom, 2023. "Forecasting intraday market risk: A marked self-exciting point process with exogenous renewals," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 182-198.
    3. Tom Stindl & Feng Chen, 2022. "Spatiotemporal ETAS model with a renewal main‐shock arrival process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1356-1380, November.
    4. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    5. Hees, Katharina & Nayak, Smarak & Straka, Peter, 2021. "Statistical inference for inter-arrival times of extreme events in bursty time series," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    6. Youngsoo Seol, 2022. "Non-Markovian Inverse Hawkes Processes," Mathematics, MDPI, vol. 10(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    2. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    3. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    4. Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
    5. Marcello Rambaldi & Vladimir Filimonov & Fabrizio Lillo, 2016. "Detection of intensity bursts using Hawkes processes: an application to high frequency financial data," Papers 1610.05383, arXiv.org.
    6. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    8. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    9. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    10. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    11. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    12. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    13. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    14. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    15. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    16. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    17. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    18. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    19. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    20. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:120-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.