On the Hawkes Process with Different Exciting Functions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lingjiong Zhu, 2013. "Ruin Probabilities for Risk Processes with Non-Stationary Arrivals and Subexponential Claims," Papers 1304.1940, arXiv.org, revised Oct 2014.
- E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013.
"Modelling microstructure noise with mutually exciting point processes,"
Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
- E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2011. "Modeling microstructure noise with mutually exciting point processes," Papers 1101.3422, arXiv.org.
- Gabriele Stabile & Giovanni Luca Torrisi, 2010. "Risk Processes with Non-stationary Hawkes Claims Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 415-429, September.
- Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
- V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
- Zhu, Lingjiong, 2013. "Moderate deviations for Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 885-890.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
- Seol, Youngsoo, 2017. "Limit theorems for the compensator of Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 165-172.
- Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
- Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Dec 2024.
- Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
- Lingjiong Zhu, 2015. "A State-Dependent Dual Risk Model," Papers 1510.03920, arXiv.org, revised Feb 2023.
- Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
- Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
- Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
- Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
- Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
- Zailei Cheng & Youngsoo Seol, 2018. "Gaussian Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Papers 1801.07595, arXiv.org, revised Aug 2019.
- Youngsoo Seol, 2022. "Non-Markovian Inverse Hawkes Processes," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
- Horst, Ulrich & Xu, Wei, 2021. "Functional limit theorems for marked Hawkes point measures," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 94-131.
- Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
- Hyunjoo Yoo & Bara Kim & Jeongsim Kim & Jiwook Jang, 2020. "Transform approach for discounted aggregate claims in a risk model with descendant claims," Annals of Operations Research, Springer, vol. 293(1), pages 175-192, October.
- Seol, Youngsoo, 2017. "Limit theorems for the compensator of Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 165-172.
- Sarma, Utpal Jyoti Deba & Selvamuthu, Dharmaraja, 2024. "Study of discrete-time Hawkes process and its compensator," Statistics & Probability Letters, Elsevier, vol. 214(C).
- Seol, Youngsoo, 2019. "Limit theorems for an inverse Markovian Hawkes process," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
- Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
- Jang, Jiwook & Dassios, Angelos, 2013. "A bivariate shot noise self-exciting process for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 524-532.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2014-03-15 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.0994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.