IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4267-d285076.html
   My bibliography  Save this article

Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel

Author

Listed:
  • Miklos Kassai

    (Department of Building Service Engineering and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3., H-1111 Budapest, Hungary)

Abstract

Climate change is continuously bringing hotter summers and because of this fact, the use of air-conditioning systems is also extending in European countries. To reduce the energy demand and consumption of these systems, it is particularly significant to identify further technical solutions for direct cooling. In this research work, a field study is carried out on the cooling energy performance of an existing, operating ventilation system placed on the flat roof of a shopping center, located in the city of Eger in Hungary. The running system supplies cooled air to the back office and storage area of a shop and includes an air-to-air rotary heat wheel, a mixing box element, and a direct expansion cooling coil connected to a variable refrigerant volume outdoor unit. The objective of the study was to investigate the thermal behavior of each component separately, in order to make clear scientific conclusions from the point of view of energy consumption. Moreover, the carbon dioxide cross-contamination in the heat wheel was also analyzed, which is the major drawback of this type heat recovery unit. To achieve this, an electricity energy meter was installed in the outdoor unit and temperature, humidity, air velocity, and carbon dioxide sensors were placed in the inlet and outlet section of each element that has an effect on the cooling process. To provide continuous data recording and remote monitoring of air handling parameters and energy consumption of the system, a network monitor interface was developed by building management system-based software. The energy impact of the heat wheel resulted in a 624 kWh energy saving and 25.1% energy saving rate for the electric energy consumption of the outdoor unit during the whole cooling period, compared to the system without heat wheel operation. The scale of CO 2 cross-contamination in the heat wheel was evaluated as an average value of 16.4%, considering the whole cooling season.

Suggested Citation

  • Miklos Kassai, 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel," Energies, MDPI, vol. 12(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4267-:d:285076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goopyo Hong & Byungseon Sean Kim, 2018. "Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy," Energies, MDPI, vol. 11(2), pages 1-16, February.
    2. Piero Bareschino & Francesco Pepe & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2019. "Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy," Energies, MDPI, vol. 12(8), pages 1-20, April.
    3. Chaowen Zhong & Ke Yan & Yuting Dai & Ning Jin & Bing Lou, 2019. "Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks," Energies, MDPI, vol. 12(3), pages 1-11, February.
    4. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laith Al-Hyari & Miklos Kassai, 2020. "Development and Experimental Validation of TRNSYS Simulation Model for Heat Wheel Operated in Air Handling Unit," Energies, MDPI, vol. 13(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goopyo Hong & Byungseon Sean Kim, 2018. "Response to Comments by Yaolin Lin and Wei Yang “Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy”. Energies 2018, 11 , 407," Energies, MDPI, vol. 11(6), pages 1-2, June.
    2. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    3. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    4. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    5. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    6. Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
    7. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    8. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    9. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    10. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    11. Yeong Rim Noh & Salman Khalid & Heung Soo Kim & Seung-Kyum Choi, 2023. "Intelligent Fault Diagnosis of Robotic Strain Wave Gear Reducer Using Area-Metric-Based Sampling," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    12. Flavio Muñoz & Ramon Garcia-Hernandez & Jose Ruelas & Juan E. Palomares-Ruiz & Carlos Álvarez-Macías, 2022. "Optimal Operation for Reduced Energy Consumption of an Air Conditioning System Using Neural Inverse Optimal Control," Mathematics, MDPI, vol. 10(5), pages 1-15, February.
    13. Ali Bagheri & Véronique Feldheim & Christos S. Ioakimidis, 2018. "On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings," Energies, MDPI, vol. 11(4), pages 1-20, April.
    14. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    15. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    16. Win-Jet Luo & Dini Faridah & Fikri Rahmat Fasya & Yu-Sheng Chen & Fikri Hizbul Mulki & Utami Nuri Adilah, 2019. "Performance Enhancement of Hybrid Solid Desiccant Cooling Systems by Integrating Solar Water Collectors in Taiwan," Energies, MDPI, vol. 12(18), pages 1-18, September.
    17. Maria Rosaria Termite & Piero Baraldi & Sameer Al-Dahidi & Luca Bellani & Michele Compare & Enrico Zio, 2019. "A Never-Ending Learning Method for Fault Diagnostics in Energy Systems Operating in Evolving Environments," Energies, MDPI, vol. 12(24), pages 1-26, December.
    18. Niemann, Peter & Schmitz, Gerhard, 2020. "Air conditioning system with enthalpy recovery for space heating and air humidification: An experimental and numerical investigation," Energy, Elsevier, vol. 213(C).
    19. Meng, Di & Shao, Cheng & Zhu, Li, 2022. "Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation," Energy, Elsevier, vol. 239(PA).
    20. Huang, Xianghui & Li, Kuining & Xie, Yi & Liu, Bin & Liu, Jiangyan & Liu, Zhaoming & Mou, Lunjie, 2022. "A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4267-:d:285076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.