Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Gil Cohen, 2022. "Algorithmic Strategies for Precious Metals Price Forecasting," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Ni, Yensen & Day, Min-Yuh & Huang, Paoyu & Yu, Shang-Ru, 2020. "The profitability of Bollinger Bands: Evidence from the constituent stocks of Taiwan 50," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
- Bizzi, Lorenzo & Labban, Alice, 2019. "The double-edged impact of social media on online trading: Opportunities, threats, and recommendations for organizations," Business Horizons, Elsevier, vol. 62(4), pages 509-519.
- Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Gil Cohen, 2021. "Optimizing candlesticks patterns for Bitcoin's trading systems," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1155-1167, October.
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
- Gil Cohen & Mahmoud Qadan, 2022. "The Complexity of Cryptocurrencies Algorithmic Trading," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
- Young Bin Kim & Jurim Lee & Nuri Park & Jaegul Choo & Jong-Hyun Kim & Chang Hun Kim, 2017. "When Bitcoin encounters information in an online forum: Using text mining to analyse user opinions and predict value fluctuation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Brunhuemer & Lukas Larcher & Philipp Seidl & Sascha Desmettre & Johannes Kofler & Gerhard Larcher, 2022. "Supervised Machine Learning Classification for Short Straddles on the S&P500," Risks, MDPI, vol. 10(12), pages 1-25, December.
- Ardita TODRI & Petraq PAPAJORGJI, 2024. "Artificial Intelligence Waves In Financial Services Industry: An Evolution Factorial Analysis," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(2), pages 63-75, June.
- Muhammad Arslan & Ahmed Imran Hunjra & Wajid Shakeel Ahmed & Younes Ben Zaied, 2024. "Forecasting multi‐frequency intraday exchange rates using deep learning models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1338-1355, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Isabela Ruiz Roque da Silva & Eli Hadad Junior & Pedro Paulo Balbi, 2022. "Cryptocurrencies trading algorithms: A review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1661-1668, December.
- Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
- Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
- Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
- Abeer ElBahrawy & Laura Alessandretti & Andrea Baronchelli, 2019. "Wikipedia and Digital Currencies: Interplay Between Collective Attention and Market Performance," Papers 1902.04517, arXiv.org, revised Mar 2019.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
- Chowdhury, Reaz & Rahman, M. Arifur & Rahman, M. Sohel & Mahdy, M.R.C., 2020. "An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Surinder Singh Khurana & Parvinder Singh & Naresh Kumar Garg, 2024. "OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1735-1756, May.
- Ze Shen & Qing Wan & David J. Leatham, 2021. "Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN," JRFM, MDPI, vol. 14(7), pages 1-18, July.
- Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
- Jakub Micha'nk'ow & Pawe{l} Sakowski & Robert 'Slepaczuk, 2023.
"Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices,"
Papers
2309.15640, arXiv.org.
- Jakub Michańków & Paweł Sakowski & Robert Ślepaczuk, 2023. "Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices," Working Papers 2023-25, Faculty of Economic Sciences, University of Warsaw.
More about this item
Keywords
algorithmic trading; fuzzy systems; LSTM; forecasting; Artificial Intelligence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3302-:d:912640. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.