Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2022.103111
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
- Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
- Wenjie Lu & Jiazheng Li & Yifan Li & Aijun Sun & Jingyang Wang, 2020. "A CNN-LSTM-Based Model to Forecast Stock Prices," Complexity, Hindawi, vol. 2020, pages 1-10, November.
- Bessler, Wolfgang & Taushanov, Georgi & Wolff, Dominik, 2021. "Optimal asset allocation strategies for international equity portfolios: A comparison of country versus industry optimization," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
- Haiyao Wang & Jianxuan Wang & Lihui Cao & Yifan Li & Qiuhong Sun & Jingyang Wang & Kai Hu, 2021. "A Stock Closing Price Prediction Model Based on CNN-BiSLSTM," Complexity, Hindawi, vol. 2021, pages 1-12, September.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Pyo, Sujin & Lee, Jaewook, 2018. "Exploiting the low-risk anomaly using machine learning to enhance the Black–Litterman framework: Evidence from South Korea," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 1-12.
- Barros Fernandes, José Luiz & Haas Ornelas, José Renato & Martínez Cusicanqui, Oscar Augusto, 2012.
"Combining equilibrium, resampling, and analyst’s views in portfolio optimization,"
Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1354-1361.
- José Luis Barros Fernandes & José Renato Haas Ornelas & Oscar Augusto Martínez Cusicanqui, 2011. "Combining equilibrium, resampling, and analysts' views in portfolio optimization," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 75-84, Bank for International Settlements.
- Fernandes, Betina & Street, Alexandre & Fernandes, Cristiano & Valladão, Davi, 2018. "On an adaptive Black–Litterman investment strategy using conditional fundamentalist information: A Brazilian case study," Finance Research Letters, Elsevier, vol. 27(C), pages 201-207.
- Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuqin Sun & Yungao Wu & Gejirifu De, 2023. "A Novel Black-Litterman Model with Time-Varying Covariance for Optimal Asset Allocation of Pension Funds," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
- Li, Shicheng & Huang, Xiaoyong & Cheng, Zhonghou & Zou, Wei & Yi, Yugen, 2023. "AE-ACG: A novel deep learning-based method for stock price movement prediction," Finance Research Letters, Elsevier, vol. 58(PA).
- Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
- Chi-Lin Li & Chung-Han Hsieh, 2023. "On Unified Adaptive Portfolio Management," Papers 2307.03391, arXiv.org, revised Apr 2024.
- Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
- Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
- Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
- Chen, Kuan-Hau & Su, Xuan-Qi & Lin, Li-Feng & Shih, Yi-Cheng, 2021. "Profitability of moving-average technical analysis over the firm life cycle: Evidence from Taiwan," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
- Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
- Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
- Jakub Micha'nk'ow & Pawe{l} Sakowski & Robert 'Slepaczuk, 2023.
"Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices,"
Papers
2309.15640, arXiv.org.
- Jakub Michańków & Paweł Sakowski & Robert Ślepaczuk, 2023. "Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices," Working Papers 2023-25, Faculty of Economic Sciences, University of Warsaw.
- Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
- Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
- Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
More about this item
Keywords
Deep learning; Stock prediction; Portfolio optimization; Black-Litterman;All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:49:y:2022:i:c:s154461232200335x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.