IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1134-d785241.html
   My bibliography  Save this article

Algorithmic Strategies for Precious Metals Price Forecasting

Author

Listed:
  • Gil Cohen

    (Department of Management, Western Galilee Academic College, P.O. Box 2125, Acre 2412101, Israel)

Abstract

This research is the first attempt to create machine learning (ML) algorithmic systems that would be able to automatically trade precious metals. The algorithm uses three forecast methodologies: linear regression (LR), Darvas boxes (DB), and Bollinger bands (BB). Our data consists of 20 years of daily price data concerning five precious metals futures: gold, silver, copper, platinum, and palladium. We found that all of the examined precious metals’ current daily returns are negatively autocorrelated to their former day’s returns and identified lagged interdependencies among the examined metals. Silver futures prices were found to be best forecasted by our systems, and platinum the worst. Moreover, our system better forecasts price-up trends than downtrends for all examined techniques and commodities. Linear regression was found to be the best technique to forecast silver and gold prices trends, while the Bollinger band technique best fits palladium forecasting.

Suggested Citation

  • Gil Cohen, 2022. "Algorithmic Strategies for Precious Metals Price Forecasting," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1134-:d:785241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Jammazi, Rania, 2019. "Spillovers from oil to precious metals: Quantile approaches," Resources Policy, Elsevier, vol. 61(C), pages 508-521.
    2. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    3. Zheng, Yao, 2015. "The linkage between aggregate investor sentiment and metal futures returns: A nonlinear approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 128-142.
    4. Bosch, David & Pradkhan, Elina, 2015. "The impact of speculation on precious metals futures markets," Resources Policy, Elsevier, vol. 44(C), pages 118-134.
    5. Qadan, Mahmoud, 2019. "Risk appetite and the prices of precious metals," Resources Policy, Elsevier, vol. 62(C), pages 136-153.
    6. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Insu & Kim, Woo Chang, 2024. "Practical forecasting of risk boundaries for industrial metals and critical minerals via statistical machine learning techniques," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farid, Saqib & Kayani, Ghulam Mujtaba & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain, 2021. "Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 72(C).
    2. Talbi, Marwa & de Peretti, Christian & Belkacem, Lotfi, 2020. "Dynamics and causality in distribution between spot and future precious metals: A copula approach," Resources Policy, Elsevier, vol. 66(C).
    3. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    4. Luu Duc Huynh, Toan, 2020. "The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR," Resources Policy, Elsevier, vol. 66(C).
    5. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    6. Cohen, Gil & Aiche, Avishay, 2023. "Forecasting gold price using machine learning methodologies," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Gil, Cohen, 2022. "Intraday Trading of Precious Metals Futures Using Algorithmic Systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    9. Sheng‐Tun Li & Kuei‐Chen Chiu & Chien‐Chang Wu, 2023. "Apply big data analytics for forecasting the prices of precious metals futures to construct a hedging strategy for industrial material procurement," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 942-959, March.
    10. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    11. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    12. Aikins Abakah, Emmanuel Joel & Gil-Alana, Luis A. & Tripathy, Trilochan, 2022. "Stochastic structure of metal prices: Evidence from fractional integration non-linearities and breaks," Resources Policy, Elsevier, vol. 78(C).
    13. Bao, Dun, 2020. "Dynamics and correlation of platinum-group metals spot prices," Resources Policy, Elsevier, vol. 68(C).
    14. Uddin, Gazi Salah & Shahzad, Syed Jawad Hussain & Boako, Gideon & Hernandez, Jose Areola & Lucey, Brian M., 2019. "Heterogeneous interconnections between precious metals: Evidence from asymmetric and frequency-domain spillover analysis," Resources Policy, Elsevier, vol. 64(C).
    15. Mensi, Walid & Aslan, Aylin & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Time-frequency spillovers and connectedness between precious metals, oil futures and financial markets: Hedge and safe haven implications," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 219-232.
    16. Yıldırım, Durmuş Çağrı & Cevik, Emrah Ismail & Esen, Ömer, 2020. "Time-varying volatility spillovers between oil prices and precious metal prices," Resources Policy, Elsevier, vol. 68(C).
    17. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    18. Umar, Zaghum & Nasreen, Samia & Solarin, Sakiru Adebola & Tiwari, Aviral Kumar, 2019. "Exploring the time and frequency domain connectedness of oil prices and metal prices," Resources Policy, Elsevier, vol. 64(C).
    19. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Maitra, Debasish & Al-Jarrah, Idries Mohammad Wanas, 2019. "Portfolio management and dependencies among precious metal markets: Evidence from a Copula quantile-on-quantile approach," Resources Policy, Elsevier, vol. 64(C).
    20. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1134-:d:785241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.