Regression and Forecasting of U.S. Stock Returns Based on LSTM
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
- Stiven Agusta & Fuad Rakhman & Jogiyanto Hartono Mustakini & Singgih Wijayana, 2024. "Enhancing the accuracy of stock return movement prediction in Indonesia through recent fundamental value incorporation in multilayer perceptron," Asian Journal of Accounting Research, Emerald Group Publishing Limited, vol. 9(4), pages 358-377, July.
- Zong Ke & Yuchen Yin, 2024. "Tail Risk Alert Based on Conditional Autoregressive VaR by Regression Quantiles and Machine Learning Algorithms," Papers 2412.06193, arXiv.org.
- Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
- Saqib Muneer & Babar Zaheer Butt & Kashif Ur Rehman, 2011. "A Multifactor Model of Banking Industry Stock Returns: An Emerging Market Perspective," Information Management and Business Review, AMH International, vol. 2(6), pages 267-275.
- Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
- Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Jujie Wang & Zhenzhen Zhuang & Liu Feng, 2022. "Intelligent Optimization Based Multi-Factor Deep Learning Stock Selection Model and Quantitative Trading Strategy," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
- Caparrini, Antonio & Arroyo, Javier & Escayola Mansilla, Jordi, 2024. "S&P 500 stock selection using machine learning classifiers: A look into the changing role of factors," Research in International Business and Finance, Elsevier, vol. 70(PA).
- Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
- Zhu, Zhoufan & Zhang, Ningning & Zhu, Ke, 2024. "Big portfolio selection by graph-based conditional moments method," Journal of Empirical Finance, Elsevier, vol. 78(C).
- Jakub Micha'nk'ow & Pawe{l} Sakowski & Robert 'Slepaczuk, 2023.
"Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices,"
Papers
2309.15640, arXiv.org.
- Jakub Michańków & Paweł Sakowski & Robert Ślepaczuk, 2023. "Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices," Working Papers 2023-25, Faculty of Economic Sciences, University of Warsaw.
- Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
- Cohen, Gil & Aiche, Avishay, 2023. "Forecasting gold price using machine learning methodologies," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Marco Avellaneda & Juan Andr'es Serur, 2020. "Hierarchical PCA and Modeling Asset Correlations," Papers 2010.04140, arXiv.org.
- Chen, Rui & Ren, Jinjuan, 2022. "Do AI-powered mutual funds perform better?," Finance Research Letters, Elsevier, vol. 47(PA).
- Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Zografopoulos, Lazaros & Iannino, Maria Chiara & Psaradellis, Ioannis & Sermpinis, Georgios, 2025. "Industry return prediction via interpretable deep learning," European Journal of Operational Research, Elsevier, vol. 321(1), pages 257-268.
- Fang, Yi & Chen, Yuzhi & Ren, Hang, 2023. "A factor pricing model based on machine learning algorithm," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 280-297.
- Cheng Zhao & Ping Hu & Xiaohui Liu & Xuefeng Lan & Haiming Zhang, 2023. "Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Uta Pigorsch & Sebastian Schafer, 2021. "High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning," Papers 2112.04755, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2025-03-17 (Financial Markets)
- NEP-FOR-2025-03-17 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.05210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.