IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v133y2020ics0960077920300400.html
   My bibliography  Save this article

Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market

Author

Listed:
  • Lahmiri, Salim
  • Bekiros, Stelios

Abstract

Due to the remarkable boost in cryptocurrency trading on digital blockchain platforms, the utilization of advanced machine learning systems for robust prediction of highly nonlinear and noisy data, gains further popularity by individual and institutional market agents. The purpose of our study is to comparatively evaluate a plethora of Artificial Intelligence systems in forecasting high frequency Bitcoin price series. We employ three different sets of models, i.e., statistical machine learning approaches including support vector regressions (SVR) and Gaussian Poisson regressions (GRP), algorithmic models such as regression trees (RT) and the k-nearest neighbours (kNN) and finally artificial neural network topologies such as feedforward (FFNN), Bayesian regularization (BRNN) and radial basis function networks (RBFNN). To the best of our knowledge, this is the first time an extensive empirical investigation of the comparative predictability of various machine learning models is implemented in high-frequency trading of Bitcoin. The entropy analysis of training and testing samples reveals long memory traits, high levels of stochasticity, and topological complexity. The presence of inherent nonlinear dynamics of Bitcoin time series fully rationalizes the use of advanced machines learning techniques. The optimal parameter values for SVR, GRP and kNN are found via Bayesian optimization. Based on diverse performance metrics, our results show that the BRNN renders an outstanding accuracy in forecasting, while its convergence is unhindered and remarkably fast. The overall superiority of artificial neural networks is due to parallel processing features that efficiently emulate human decision-making in the presence of underlying nonlinear input-output relationships in noisy signal environments.

Suggested Citation

  • Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300400
    DOI: 10.1016/j.chaos.2020.109641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920300400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    2. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    3. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    4. Song, Jung Yoon & Chang, Woojin & Song, Jae Wook, 2019. "Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    5. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    6. Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
    7. Zhang, Xin & Yang, Liansheng & Zhu, Yingming, 2019. "Analysis of multifractal characterization of Bitcoin market based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 973-983.
    8. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    9. Cheng, Qing & Liu, Xinyuan & Zhu, Xiaowu, 2019. "Cryptocurrency momentum effect: DFA and MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    10. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Ziwei & Li, Yuxuan & Zhu, Hongqiu & Huang, Keke & Tang, Zhaohui & Wang, Zhen, 2020. "Sparse stacked autoencoder network for complex system monitoring with industrial applications," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Rolando Rubilar-Torrealba & Karime Chahuán-Jiménez & Hanns de la Fuente-Mella, 2023. "A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    3. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Hulusi Mehmet Tanrikulu & Hakan Pabuccu, 2024. "The Effect of Data Types' on the Performance of Machine Learning Algorithms for Financial Prediction," Papers 2404.19324, arXiv.org.
    5. Paolo Angelis & Roberto Marchis & Mario Marino & Antonio Luciano Martire & Immacolata Oliva, 2021. "Betting on bitcoin: a profitable trading between directional and shielding strategies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 883-903, December.
    6. Parisa Foroutan & Salim Lahmiri, 2024. "Deep learning systems for forecasting the prices of crude oil and precious metals," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-40, December.
    7. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    8. Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
    9. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    10. Bhaskar Tripathi & Rakesh Kumar Sharma, 2023. "Modeling Bitcoin Prices using Signal Processing Methods, Bayesian Optimization, and Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1919-1945, December.
    11. Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
    12. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
    14. Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
    15. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    16. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
    17. Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
    18. Cao, Guangxi & Ling, Meijun, 2022. "Asymmetry and conduction direction of the interdependent structure between cryptocurrency and US dollar, renminbi, and gold markets," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Ngo, Vu Minh & Nguyen, Huan Huu & Van Nguyen, Phuc, 2023. "Does reinforcement learning outperform deep learning and traditional portfolio optimization models in frontier and developed financial markets?," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Ana Paula Santos Gularte & Danusio Gadelha Guimarães Filho & Gabriel Oliveira Torres & Thiago Carvalho Nunes Silva & Vitor Venceslau Curtis, 2024. "Machine Learning-Based Time Series Prediction at Brazilian Stocks Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2477-2508, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
    3. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    4. Alves, P.R.L., 2020. "Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    6. Qiao, Xingzhi & Zhu, Huiming & Hau, Liya, 2020. "Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    7. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Lahmiri, Salim & Bekiros, Stelios, 2019. "Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 334-341.
    9. Khurshid, Adnan & Khan, Khalid & Cifuentes-Faura, Javier & Chen, Yufeng, 2024. "Asymmetric multifractality: Comparative efficiency analysis of global technological and renewable energy prices using MFDFA and A-MFDFA approaches," Energy, Elsevier, vol. 289(C).
    10. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    11. Lahmiri, Salim & Bekiros, Stelios, 2021. "The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    13. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    14. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    15. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    16. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    17. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
    18. Luo, Di & Mishra, Tapas & Yarovaya, Larisa & Zhang, Zhuang, 2021. "Investing during a Fintech Revolution: Ambiguity and return risk in cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    19. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    20. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.