IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.04642.html
   My bibliography  Save this paper

Forecasting the movements of Bitcoin prices: an application of machine learning algorithms

Author

Listed:
  • Hakan Pabuccu
  • Serdar Ongan
  • Ayse Ongan

Abstract

Cryptocurrencies, such as Bitcoin, are one of the most controversial and complex technological innovations in today's financial system. This study aims to forecast the movements of Bitcoin prices at a high degree of accuracy. To this aim, four different Machine Learning (ML) algorithms are applied, namely, the Support Vector Machines (SVM), the Artificial Neural Network (ANN), the Naive Bayes (NB) and the Random Forest (RF) besides the logistic regression (LR) as a benchmark model. In order to test these algorithms, besides existing continuous dataset, discrete dataset was also created and used. For the evaluations of algorithm performances, the F statistic, accuracy statistic, the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Root Absolute Error (RAE) metrics were used. The t test was used to compare the performances of the SVM, ANN, NB and RF with the performance of the LR. Empirical findings reveal that, while the RF has the highest forecasting performance in the continuous dataset, the NB has the lowest. On the other hand, while the ANN has the highest and the NB the lowest performance in the discrete dataset. Furthermore, the discrete dataset improves the overall forecasting performance in all algorithms (models) estimated.

Suggested Citation

  • Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
  • Handle: RePEc:arx:papers:2303.04642
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.04642
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    2. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    3. Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Jonathan E Butner & Ascher K Munion & Brian R W Baucom & Alexander Wong, 2019. "Ghost hunting in the nonlinear dynamic machine," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-21, December.
    5. Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
    6. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    7. Nikolay Miller & Yiming Yang & Bruce Sun & Guoyi Zhang, 2019. "Identification of technical analysis patterns with smoothing splines for bitcoin prices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2289-2297, September.
    8. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    9. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    10. Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
    11. Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berna Yaman Şahin & Sema Ulutürk Akman, 2024. "Performance Comparison of Genetic and Machine Learning Algorithms in Crypto Markets," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul Journal of Economics-Istanbul Iktisat Dergisi, vol. 0(40), pages 151-164, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    2. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    3. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    6. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    7. Surinder Singh Khurana & Parvinder Singh & Naresh Kumar Garg, 2024. "OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1735-1756, May.
    8. Sofiane Aboura, 2022. "A note on the Bitcoin and Fed Funds rate," Empirical Economics, Springer, vol. 63(5), pages 2577-2603, November.
    9. Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
    10. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    11. Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    13. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    14. Dulani Jayasuriya Daluwathumullagamage & Alexandra Sims, 2021. "Fantastic Beasts: Blockchain Based Banking," JRFM, MDPI, vol. 14(4), pages 1-43, April.
    15. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    16. Lars Hornuf & Paul P. Momtaz & Rachel J. Nam & Ye Yuan, 2023. "Cybercrime on the Ethereum Blockchain," CESifo Working Paper Series 10598, CESifo.
    17. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    18. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    19. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr & Vo, Xuan Vinh, 2021. "The pricing of bad contagion in cryptocurrencies: A four-factor pricing model," Finance Research Letters, Elsevier, vol. 41(C).
    20. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.04642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.