IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i5p1338-1355.html
   My bibliography  Save this article

Forecasting multi‐frequency intraday exchange rates using deep learning models

Author

Listed:
  • Muhammad Arslan
  • Ahmed Imran Hunjra
  • Wajid Shakeel Ahmed
  • Younes Ben Zaied

Abstract

This paper examines the behavior of currencies' intraday exchange rates with mainly focuses on predicting these behaviors through deep learning models. The time series data are used in this study and comprise intraday exchange rate data for seven volatile currencies, recorded at two different frequency intervals: 1 h and 30 min. The data cover the time frame from January 1, 2018, to December 31, 2020. Firstly, wavelet maximal overlap discreet wavelet transform (MODWT) type “haar” is applied in order to identify the noise representing the volatile trend. Then learning models are applied to historical data that includes support vector regression (SVR), recurrent neural network (RNN), and long short‐term memory (LSTM). The main findings of the study provide strong evidence that the deep learning technique (i.e., LSTM) outperforms the other compatible models. This has been confirmed by the statistical measures for accuracy purposes. This study intends to address complex trends exhibited by volatile behavior of intraday exchange rates through non‐conventional learning techniques for the time of need‐based for the currency traders and other stakeholders.

Suggested Citation

  • Muhammad Arslan & Ahmed Imran Hunjra & Wajid Shakeel Ahmed & Younes Ben Zaied, 2024. "Forecasting multi‐frequency intraday exchange rates using deep learning models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1338-1355, August.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1338-1355
    DOI: 10.1002/for.3082
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3082
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1338-1355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.