IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1547-d1484615.html
   My bibliography  Save this article

Research on the Correlation between the Dynamic Distribution Patterns of Urban Population Density and Land Use Morphology Based on Human–Land Big Data: A Case Study of the Shanghai Central Urban Area

Author

Listed:
  • Yi Shi

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

  • Yi Zheng

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

  • Daijun Chen

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

  • Junyan Yang

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

  • Yue Cao

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

  • Ao Cui

    (Department of Urban Planning, School of Architecture, Sipailou Campus, Southeast University, Nanjing 210096, China)

Abstract

The dynamic distribution of urban population density and the interaction with land use elements involve mutual constraints and guidance. However, in the existing research on the relationship between urban population density and land use, the discussion on the distribution patterns of urban population density typically spans long time periods and uses large spatial units, lacking analysis of the dynamic changes in population density within high granularity land parcels over a day. In studies related to the urban built environment, the complex relationships between different-dimensional land use elements and the dynamic distribution of population density also need further exploration. To address these bottlenecks, this study takes Shanghai’s central urban area as an example. Based on 24 h mobile signaling data on weekdays, weekends, and typical holidays, as well as urban land use data, clustering algorithms are used to summarize patterns of dynamic population density distribution. Pearson correlation analysis is then employed to study the correlation between dynamic population density distribution patterns and different land use elements. The results indicate that various urban land use factors such as locational centrality, functional diversity, transportation accessibility, compactness, and landscape quality have different impacts on the dynamic distribution of population density in spatial units, and the dynamic distribution patterns of population density in different land use types also vary. This research contributes to guiding the optimization of spatial quality and formulating planning and management measures that more effectively match construction intensity with population activity density.

Suggested Citation

  • Yi Shi & Yi Zheng & Daijun Chen & Junyan Yang & Yue Cao & Ao Cui, 2024. "Research on the Correlation between the Dynamic Distribution Patterns of Urban Population Density and Land Use Morphology Based on Human–Land Big Data: A Case Study of the Shanghai Central Urban Area," Land, MDPI, vol. 13(10), pages 1-18, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1547-:d:1484615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    2. Yao Shen & Kayvan Karimi, 2018. "Urban evolution as a spatio-functional interaction process: the case of central Shanghai," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 42-70, January.
    3. Zuo Zhang & Yangxiong Xiao & Xiang Luo & Min Zhou, 2020. "Urban human activity density spatiotemporal variations and the relationship with geographical factors: An exploratory Baidu heatmaps‐based analysis of Wuhan, China," Growth and Change, Wiley Blackwell, vol. 51(1), pages 505-529, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    2. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    3. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    4. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    5. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    6. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    7. Hua Chen & Shuang Dai & Fanlin Meng, 2023. "Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
    8. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    9. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    10. Mantas Svazas & Valentinas Navickas & Yuriy Bilan & Joanna Nakonieczny & Jana Spankova, 2021. "Biomass Clusterization from a Regional Perspective: The Case of Lithuania," Energies, MDPI, vol. 14(21), pages 1-15, October.
    11. Costa, Antonio & da Silva, Cristiano & Matos, Paulo, 2022. "The Brazilian financial market reaction to COVID-19: A wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 13-29.
    12. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.
    13. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting," Complexity, Hindawi, vol. 2018, pages 1-21, April.
    14. Curado, Manuel & Tortosa, Leandro & Vicent, Jose F., 2021. "Identifying mobility patterns by means of centrality algorithms in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    15. Jasmien Lismont & Tine Van Calster & María Óskarsdóttir & Seppe vanden Broucke & Bart Baesens & Wilfried Lemahieu & Jan Vanthienen, 2019. "Closing the Gap Between Experts and Novices Using Analytics-as-a-Service: An Experimental Study," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 679-693, December.
    16. Frank Davenport & Chris Funk, 2015. "Using time series structural characteristics to analyze grain prices in food insecure countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 1055-1070, October.
    17. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    18. Dongjun Kim & Jinsung Yun & Kijung Kim & Seungil Lee, 2021. "A Comparative Study of the Robustness and Resilience of Retail Areas in Seoul, Korea before and after the COVID-19 Outbreak, Using Big Data," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    19. Tianbo Chen & Ying Sun & Carolina Euan & Hernando Ombao, 2021. "Clustering Brain Signals: a Robust Approach Using Functional Data Ranking," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 425-442, October.
    20. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1547-:d:1484615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.