IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v592y2021i7852d10.1038_s41586-021-03325-5.html
   My bibliography  Save this article

Soil moisture–atmosphere feedback dominates land carbon uptake variability

Author

Listed:
  • Vincent Humphrey

    (California Institute of Technology)

  • Alexis Berg

    (Harvard University)

  • Philippe Ciais

    (Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ)

  • Pierre Gentine

    (Columbia University)

  • Martin Jung

    (Max Planck Institute for Biogeochemistry)

  • Markus Reichstein

    (Max Planck Institute for Biogeochemistry)

  • Sonia I. Seneviratne

    (ETH Zurich)

  • Christian Frankenberg

    (California Institute of Technology
    California Institute of Technology)

Abstract

Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations1. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale2–5. Here we use factorial climate model simulations6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role4, which is not readily apparent from land surface model simulations and observational analyses2,5. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally5,7, as well as when conducting field-scale investigations of the response of the ecosystem to droughts8,9. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.

Suggested Citation

  • Vincent Humphrey & Alexis Berg & Philippe Ciais & Pierre Gentine & Martin Jung & Markus Reichstein & Sonia I. Seneviratne & Christian Frankenberg, 2021. "Soil moisture–atmosphere feedback dominates land carbon uptake variability," Nature, Nature, vol. 592(7852), pages 65-69, April.
  • Handle: RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03325-5
    DOI: 10.1038/s41586-021-03325-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03325-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03325-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    2. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    3. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Selma Bultan & Julia E. M. S. Nabel & Kerstin Hartung & Raphael Ganzenmüller & Liang Xu & Sassan Saatchi & Julia Pongratz, 2022. "Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yangyang Wu & Jinli Yang & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Lei Gu & Zhenghua Shi & Guangjie Luo, 2023. "NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China," Land, MDPI, vol. 12(7), pages 1-24, June.
    8. Tengteng Qu & Yaoyu Li & Qixin Zhao & Yunzhen Yin & Yuzhi Wang & Fuzhong Li & Wuping Zhang, 2024. "Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    9. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Zhang, Xiaoyuan & Wang, Ke & Duan, Cuihua & Li, Gaoliang & Zhen, Qing & Zheng, Jiyong, 2023. "Evaporation effect of infiltration hole and its comparison with mulching," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Xing, Wanqiu & Yang, Lilin & Wang, Weiguang & Yu, Zhongbo & Shao, Quanxi & Xu, Shiqin & Fu, Jianyu, 2023. "Environmental controls on carbon and water fluxes of a wheat-maize rotation cropland over the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 283(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03325-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.