IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421007046.html
   My bibliography  Save this article

Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands

Author

Listed:
  • Chen, Yanan
  • Ding, Zhi
  • Yu, Pujia
  • Yang, Hong
  • Song, Lisheng
  • Fan, Lei
  • Han, Xujun
  • Ma, Mingguo
  • Tang, Xuguang

Abstract

Current, how to use limited water resources efficiently and improve agricultural water use efficiency, has become one of the greatest challenges for global food security. In this study, multiple site-years of carbon and water flux data across the major crops including maize, winter wheat and soybean, were used to quantify the variability in canopy-scale transpiration (T), ecosystem-scale evapotranspiration (ET) as well as the associated water use efficiencies (WUET and WUEET). On the basis of ET partitioning, the results indicated that the transpiration ratio–T/ET as well as T and ET exhibited an obvious single-peak seasonal pattern across the typical croplands. However, at the early and late growing stages, there existed large discrepancies in T and ET owing to low vegetation coverage, while T and ET were very close during the peak period. Among them, maize exhibited the largest T/ET by 0.50 ± 0.12, followed by soybean of 0.43 ± 0.08 and winter wheat of 0.38 ± 0.09, respectively. Furthermore, the coupling relationships between gross primary productivity (GPP) and water fluxes including T and ET changed from linear to nonlinear. The study also found that the variability in WUET and WUEET were not consistent. Specifically, WUEET showed distinct seasonal characteristic whereas WUET kept constant as a plateau almost throughout the growth period, which reflected the inherent physiological property controlled by plant stomata at the canopy scale. Among these crops, maize exhibited the largest WUET and WUEET (5.30 ± 0.89 and 2.48 ± 1.14 g C kg−1 H2O), followed by winter wheat (4.97 ± 1.52 and 2.35 ± 0.64 g C kg−1 H2O) and soybean (4.88 ± 1.59 and 1.89 ± 0.99 g C kg−1 H2O), respectively.

Suggested Citation

  • Chen, Yanan & Ding, Zhi & Yu, Pujia & Yang, Hong & Song, Lisheng & Fan, Lei & Han, Xujun & Ma, Mingguo & Tang, Xuguang, 2022. "Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007046
    DOI: 10.1016/j.agwat.2021.107427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
    2. Wang, Tongxin & Tang, Xuguang & Zheng, Chen & Gu, Qing & Wei, Jin & Ma, Mingguo, 2018. "Differences in ecosystem water-use efficiency among the typical croplands," Agricultural Water Management, Elsevier, vol. 209(C), pages 142-150.
    3. Lei Cheng & Lu Zhang & Ying-Ping Wang & Josep G. Canadell & Francis H. S. Chiew & Jason Beringer & Longhui Li & Diego G. Miralles & Shilong Piao & Yongqiang Zhang, 2017. "Recent increases in terrestrial carbon uptake at little cost to the water cycle," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Kimberly A. Novick & Darren L. Ficklin & Paul C. Stoy & Christopher A. Williams & Gil Bohrer & A. Christopher Oishi & Shirley A. Papuga & Peter D. Blanken & Asko Noormets & Benjamin N. Sulman & Russel, 2016. "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes," Nature Climate Change, Nature, vol. 6(11), pages 1023-1027, November.
    5. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    7. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    10. Noah James Langenfeld & Daniel Fernandez Pinto & James E. Faust & Royal Heins & Bruce Bugbee, 2022. "Principles of Nutrient and Water Management for Indoor Agriculture," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    11. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    12. Chen, Yongfan & Zhang, Zeshan & Wang, Xuejiao & Sun, Shuai & Zhang, Yutong & Wang, Sen & Yang, Mingfeng & Ji, Fen & Ji, Chunrong & Xiang, Dao & Zha, Tianshan & Zhang, Lizhen, 2022. "Sap velocity, transpiration and water use efficiency of drip-irrigated cotton in response to chemical topping and row spacing," Agricultural Water Management, Elsevier, vol. 267(C).
    13. Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
    14. Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    16. Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
    17. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    18. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    20. Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.