Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2023.108266
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tianbao Zhao & Aiguo Dai, 2017. "Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes," Climatic Change, Springer, vol. 144(3), pages 535-548, October.
- Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
- Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
- Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
- Aiguo Dai & Tianbao Zhao, 2017. "Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes," Climatic Change, Springer, vol. 144(3), pages 519-533, October.
- Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
- Pandey, Sushil & Bhandari, Humnath & Sharan, Ramesh & Taunk, Sudhir K. & Naik, Dibakar & Prapertchob, Preeda & Ding, Shijun, 2004. "Economic Costs Of Drought And Rice Farmers Risk Coping Mechanisms: A Cross Country Comparative Analysis," 2004 Annual meeting, August 1-4, Denver, CO 19966, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tang, Zijun & Lu, Junsheng & Xiang, Youzhen & Shi, Hongzhao & Sun, Tao & Zhang, Wei & Wang, Han & Zhang, Xueyan & Li, Zhijun & Zhang, Fucang, 2024. "Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves," Agricultural Water Management, Elsevier, vol. 298(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
- Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
- Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
- Jinmeng Zhang & Shiqiao Zhang & Min Cheng & Hong Jiang & Xiuying Zhang & Changhui Peng & Xuehe Lu & Minxia Zhang & Jiaxin Jin, 2018. "Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
- Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
- Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
- Sandy Dall'Erba & Zhangliang Chen & Noé J. Nava, 2021. "U.S. Interstate Trade Will Mitigate the Negative Impact of Climate Change on Crop Profit," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1720-1741, October.
- D. Carvalho & S. C. Pereira & R. Silva & A. Rocha, 2022. "Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios," Climatic Change, Springer, vol. 174(3), pages 1-24, October.
- Simi Goyol & Chaminda Pathirage, 2018. "Farmers Perceptions of Climate Change Related Events in Shendam and Riyom, Nigeria," Economies, MDPI, vol. 6(4), pages 1-26, December.
- Anthony S. Kiem & Fiona Johnson & Seth Westra & Albert Dijk & Jason P. Evans & Alison O’Donnell & Alexandra Rouillard & Cameron Barr & Jonathan Tyler & Mark Thyer & Doerte Jakob & Fitsum Woldemeskel &, 2016. "Natural hazards in Australia: droughts," Climatic Change, Springer, vol. 139(1), pages 37-54, November.
- Zong-Liang Yang & Zhuguo Ma, 2017. "Foreword to the special issue: decadal scale drought in arid regions," Climatic Change, Springer, vol. 144(3), pages 389-390, October.
- Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
- Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
- Xianxian Leng & Xiaogang Liu & Yanli Gao & Yujie Liu & Qiliang Yang & Guangzhao Sun & Youliang Peng & Yifeng Huang, 2020. "Drought assessment of southwestern China based on HadGEM2-ES model under representative concentration pathway 4.5 scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 307-334, May.
- Subhasis Mitra & Puneet Srivastava & Jasmeet Lamba, 2018. "Probabilistic assessment of projected climatological drought characteristics over the Southeast USA," Climatic Change, Springer, vol. 147(3), pages 601-615, April.
- Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Aiguo Dai & Tianbao Zhao, 2017. "Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes," Climatic Change, Springer, vol. 144(3), pages 519-533, October.
- Xu, Yang & Zhang, Xuan & Hao, Zengchao & Hao, Fanghua & Li, Chong, 2021. "Projections of future meteorological droughts in China under CMIP6 from a three‐dimensional perspective," Agricultural Water Management, Elsevier, vol. 252(C).
- Sebastian Sippel & F Otto, 2014. "Beyond climatological extremes - assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate," Climatic Change, Springer, vol. 125(3), pages 381-398, August.
- Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
More about this item
Keywords
Agricultural drought assessment; Coupled hydrological and crop growth model (VIC-EPIC); Crop water anomaly percentage index (CWAPI); Soil moisture anomaly percentage index (SMAPI); Drought event identification; Agricultural drought characteristic spatial distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.