IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4440-d185871.html
   My bibliography  Save this article

Application of Biochar to the Remediation of Pb-Contaminated Solutions

Author

Listed:
  • Maria Rosaria Boni

    (Faculty of Civil and Industrial Engineering, Department of Civil, Constructional and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Agostina Chiavola

    (Faculty of Civil and Industrial Engineering, Department of Civil, Constructional and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Simone Marzeddu

    (Faculty of Civil and Industrial Engineering, Department of Civil, Constructional and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

BIOTON ® biochar, produced by a wood biomass pyrolysis process, which is usually applied as soil amendment, was investigated for a novel application, i.e., the adsorption of lead from contaminated solutions. The experimental activity included physical and chemical characterization of BIOTON ® ; and Scanning Electron Microscope (SEM) images to highlight its internal structure. The adsorption process was investigated through batch and column experiments. Adsorption kinetics showed very rapid achievement of equilibrium conditions, i.e., 50 mg/L and 100 mg/L initial Pb concentration at 2 h and 4 h, respectively. Complete removal also occurred within the same time. The Brunauer–Emmett–Teller model was a better fit for the equilibrium data of both Pb concentrations, whereas the kinetics were best represented by the pseudo second-order model. Column tests showed that the addition of biochar as an adsorbent media within the bed significantly extended the time of breakthrough and exhaustion, with respect to the column filled with soil only. The values found for the adsorption capacity of BIOTON ® - versus lead-containing solutions were comparable to those reported for commercial adsorbents. Therefore, BIOTON ® can be considered a valid option: It also offers the additional benefit of allowing the recovery of a residue, which alternately would need to be disposed of.

Suggested Citation

  • Maria Rosaria Boni & Agostina Chiavola & Simone Marzeddu, 2018. "Application of Biochar to the Remediation of Pb-Contaminated Solutions," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4440-:d:185871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    2. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    3. Nikolas Hagemann & Stephen Joseph & Hans-Peter Schmidt & Claudia I. Kammann & Johannes Harter & Thomas Borch & Robert B. Young & Krisztina Varga & Sarasadat Taherymoosavi & K. Wade Elliott & Amy McKen, 2017. "Organic coating on biochar explains its nutrient retention and stimulation of soil fertility," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    4. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Alejandra Décima & Simone Marzeddu & Margherita Barchiesi & Camilla Di Marcantonio & Agostina Chiavola & Maria Rosaria Boni, 2021. "A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar," Sustainability, MDPI, vol. 13(21), pages 1-50, October.
    2. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    3. Shixiang Zhao & Na Ta & Xudong Wang, 2020. "Absorption of Cu(II) and Zn(II) from Aqueous Solutions onto Biochars Derived from Apple Tree Branches," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Muhammad Sajjad Ahmad & Muhammad Aamer Mehmood & Huibo Luo & Boxiong Shen & Muhammad Latif & Wan Azlina Wan Ab Karim Ghani & Nuha Abdulhamid Alkhattabi & Akram Ahmed Aloqbi & Ebtihaj Jamaluddin Jambi , 2019. "Pyrolysis and Thermogravimetric Study to Elucidate the Bioenergy Potential of Novel Feedstock Produced on Poor Soils While Keeping the Environmental Sustainability Intact," Sustainability, MDPI, vol. 11(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Filippo Marchelli & Giorgio Rovero & Massimo Curti & Elisabetta Arato & Barbara Bosio & Cristina Moliner, 2021. "An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers," Energies, MDPI, vol. 14(2), pages 1-15, January.
    9. Shukla, Parul & Giri, Balendu Shekhar & Mishra, Rakesh K. & Pandey, Ashok & Chaturvedi, Preeti, 2021. "Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    11. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    12. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    13. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    14. Shao, Shanshan & Zhang, Pengfei & Xiang, Xianliang & Li, Xiaohua & Zhang, Huiyan, 2022. "Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides," Renewable Energy, Elsevier, vol. 190(C), pages 11-18.
    15. Cheng Huang & Xiuyun Sun & Lianjun Wang & Paul Storer & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    16. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    17. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    18. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    19. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4440-:d:185871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.