IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11760-d663900.html
   My bibliography  Save this article

A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar

Author

Listed:
  • María Alejandra Décima

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Simone Marzeddu

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Margherita Barchiesi

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Camilla Di Marcantonio

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Agostina Chiavola

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Maria Rosaria Boni

    (Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.

Suggested Citation

  • María Alejandra Décima & Simone Marzeddu & Margherita Barchiesi & Camilla Di Marcantonio & Agostina Chiavola & Maria Rosaria Boni, 2021. "A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar," Sustainability, MDPI, vol. 13(21), pages 1-50, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11760-:d:663900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yahya, Mohd Adib & Al-Qodah, Z. & Ngah, C.W. Zanariah, 2015. "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 218-235.
    2. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Alhashimi, Hashim A. & Aktas, Can B., 2017. "Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 13-26.
    4. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    5. Yong-Gu Lee & Jaegwan Shin & Jinwoo Kwak & Sangwon Kim & Changgil Son & Kyung Hwa Cho & Kangmin Chon, 2021. "Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues," Energies, MDPI, vol. 14(5), pages 1-15, February.
    6. Maria Rosaria Boni & Agostina Chiavola & Simone Marzeddu, 2018. "Application of Biochar to the Remediation of Pb-Contaminated Solutions," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuchen Zhang & Xigai Jia & Ziyang Kang & Xiaoxuan Kang & Ming Ge & Dongbin Zhang & Jilun Wei & Chongqing Wang & Zhangxing He, 2022. "Degradation of Tetracycline in Water by Fe-Modified Sterculia Foetida Biochar Activated Peroxodisulfate," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    3. Mariusz Z. Gusiatin & Sylwia Pasieczna-Patkowska & Magdaléna Bálintová & Marcin Kuśmierz, 2023. "Treatment of Wastewater from Soil Washing with Soluble Humic Substances Using Biochars and Activated Carbon," Energies, MDPI, vol. 16(11), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    2. Teddy Ireen Kantoro Mathabatha & Anthony Njuguna Matheri & Mohamed Belaid, 2023. "Peanut Shell-Derived Biochar as a Low-Cost Adsorbent to Extract Cadmium, Chromium, Lead, Copper, and Zinc (Heavy Metals) from Wastewater: Circular Economy Approach," Circular Economy and Sustainability, Springer, vol. 3(2), pages 1045-1064, June.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Ram K. Fagodiya & Sandeep K. Malyan & Devendra Singh & Amit Kumar & Rajender K. Yadav & Parbodh C. Sharma & Himanshu Pathak, 2022. "Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    6. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    7. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Harnpon Phungrassami & Phairat Usubharatana, 2021. "Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    9. Adrianna Kamińska & Joanna Sreńscek-Nazzal & Karolina Kiełbasa & Jadwiga Grzeszczak & Jarosław Serafin & Agnieszka Wróblewska, 2023. "Carbon-Supported Nickel Catalysts—Comparison in Alpha-Pinene Oxidation Activity," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    10. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    11. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    13. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    14. Ayub, Yousaf & Zhou, Jianzhao & Shen, Weifeng & Ren, Jingzheng, 2023. "Innovative valorization of biomass waste through integration of pyrolysis and gasification: Process design, optimization, and multi-scenario sustainability analysis," Energy, Elsevier, vol. 282(C).
    15. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    16. Salehi, Javad & Namvar, Amin & Gazijahani, Farhad Samadi & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Effect of power-to-gas technology in energy hub optimal operation and gas network congestion reduction," Energy, Elsevier, vol. 240(C).
    17. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Hugo Alexander Rondón-Quintana & Fredy Alberto Reyes-Lizcano & Saieth Baudilio Chaves-Pabón & Juan Gabriel Bastidas-Martínez & Carlos Alfonso Zafra-Mejía, 2022. "Use of Biochar in Asphalts: Review," Sustainability, MDPI, vol. 14(8), pages 1-12, April.
    19. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11760-:d:663900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.