IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v9y2012i9p3209-3226d19853.html
   My bibliography  Save this article

Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

Author

Listed:
  • Xuedong Yan

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Fan Zhang

    (Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Chen Zeng

    (Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Man Zhang

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Lochan Prasad Devkota

    (Central Department of Hydorlogy and Meteorology, Tribhuvan University, Kathmandu 44618, Nepal)

  • Tandong Yao

    (Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model.

Suggested Citation

  • Xuedong Yan & Fan Zhang & Chen Zeng & Man Zhang & Lochan Prasad Devkota & Tandong Yao, 2012. "Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal," IJERPH, MDPI, vol. 9(9), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:9:y:2012:i:9:p:3209-3226:d:19853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/9/9/3209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/9/9/3209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Zhang & Xuedong Yan & Chen Zeng & Man Zhang & Suraj Shrestha & Lochan Prasad Devkota & Tandong Yao, 2012. "Influence of Traffic Activity on Heavy Metal Concentrations of Roadside Farmland Soil in Mountainous Areas," IJERPH, MDPI, vol. 9(5), pages 1-17, May.
    2. Johansson, L. & Westerlund, L., 2001. "Energy savings in indoor swimming-pools: comparison between different heat-recovery systems," Applied Energy, Elsevier, vol. 70(4), pages 281-303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan He & Yan Xu & Yan Lv & Lei Nie & Hong Wang, 2020. "Soil Bacterial Community Structure in Turfy Swamp and Its Response to Highway Disturbance," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    2. Zhuocheng Liu & Yangang Yang & Shuangxuan Ji & Di Dong & Yinruizhi Li & Mengdi Wang & Liebao Han & Xueping Chen, 2021. "Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet Highway," IJERPH, MDPI, vol. 18(24), pages 1-30, December.
    3. Guanxing Wang & Xuedong Yan & Fan Zhang & Chen Zeng & Dan Gao, 2013. "Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 11(1), pages 1-17, December.
    4. Mirela Miclean & Oana Cadar & Erika Andrea Levei & Radu Roman & Alexandru Ozunu & Levente Levei, 2019. "Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows," IJERPH, MDPI, vol. 16(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kampel, Wolfgang & Aas, Bjørn & Bruland, Amund, 2014. "Characteristics of energy-efficient swimming facilities – A case study," Energy, Elsevier, vol. 75(C), pages 508-512.
    2. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    4. Ionuţ-Mihai Prundeanu & Ciprian Chelariu & Sorin-Ionuț Balaban & Ovidiu-Gabriel Iancu, 2020. "Distribution and Behaviour of Some Trace Elements as a Function of Apple Varieties in Northeastern Romania," IJERPH, MDPI, vol. 17(7), pages 1-18, April.
    5. Guanxing Wang & Xuedong Yan & Fan Zhang & Chen Zeng & Dan Gao, 2013. "Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 11(1), pages 1-17, December.
    6. Sisira S. Withanachchi & Giorgi Ghambashidze & Ilia Kunchulia & Teo Urushadze & Angelika Ploeger, 2018. "Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia," IJERPH, MDPI, vol. 15(4), pages 1-25, March.
    7. Maja Radziemska & Joanna Fronczyk, 2015. "Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland," IJERPH, MDPI, vol. 12(10), pages 1-16, October.
    8. Nattanan Krailertrattanachai & Daojarus Ketrot & Worachart Wisawapipat, 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand," IJERPH, MDPI, vol. 16(5), pages 1-12, February.
    9. Peng Shi & Jun Xiao & Yafeng Wang & Liding Chen, 2014. "Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction," IJERPH, MDPI, vol. 11(3), pages 1-17, February.
    10. Katsaprakakis, Dimitris Al., 2015. "Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe," Energy, Elsevier, vol. 81(C), pages 738-753.
    11. Mustafa Demir & Erdihan Tunç & Sören Thiele-Bruhn & Ömer Çelik & Awet Tekeste Tsegai & Nevzat Aslan & Sevgi Arslan, 2023. "Status, Sources and Assessment of Potentially Toxic Element (PTE) Contamination in Roadside Orchard Soils of Gaziantep (Türkiye)," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    12. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    13. Xuedong Yan & Fan Zhang & Dan Gao & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Accumulations of Heavy Metals in Roadside Soils Close to Zhaling, Eling and Nam Co Lakes in the Tibetan Plateau," IJERPH, MDPI, vol. 10(6), pages 1-17, June.
    14. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    15. Zhao, J. & Bilbao, J.I. & Spooner, E.D. & Sproul, A.B., 2018. "Experimental study of a solar pool heating system under lower flow and low pump speed conditions," Renewable Energy, Elsevier, vol. 119(C), pages 320-335.
    16. Joanna Liebersbach & Alina Żabnieńska-Góra & Iwona Polarczyk & Marderos Ara Sayegh, 2021. "Feasibility of Grey Water Heat Recovery in Indoor Swimming Pools," Energies, MDPI, vol. 14(14), pages 1-41, July.
    17. Liu, Lanbin & Fu, Lin & Zhang, Shigang, 2014. "The design and analysis of two exhaust heat recovery systems for public shower facilities," Applied Energy, Elsevier, vol. 132(C), pages 267-275.
    18. Xuedong Yan & Dan Gao & Fan Zhang & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Relationships between Heavy Metal Concentrations in Roadside Topsoil and Distance to Road Edge Based on Field Observations in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 10(3), pages 1-14, February.
    19. Giannis Papadopoulos & Evangelos I. Tolis & Giorgos Panaras, 2023. "Combined Investigation of Indoor Environmental Conditions and Energy Performance of an Aquatic Center," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    20. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:9:y:2012:i:9:p:3209-3226:d:19853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.