IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp508-512.html
   My bibliography  Save this article

Characteristics of energy-efficient swimming facilities – A case study

Author

Listed:
  • Kampel, Wolfgang
  • Aas, Bjørn
  • Bruland, Amund

Abstract

The European Union has introduced a directive with the aim to reduce primary energy production. With 40% of energy consumption connected to buildings there is a particular need of understanding the energy consumption profile and determine measures to achieve the agreed targets. Swimming facilities is a building category with particularly high energy consumption. The aim of this paper is to identify energy-efficient facilities and do an in-depth analysis to be able to determine their characteristics and further to describe how they achieve this low energy consumption. In order to find the most energy-efficient facilities, questionnaires were sent to all Norwegian swimming facilities. The results were screened and a follow up questionnaire, making a deeper analysis possible, was sent to the facilities with the lowest energy-use. The in-depth analysis showed that the facilities with the lowest energy consumption use heat exchangers and heat pumps to recover energy from the outgoing water and air. The energy is then used to warm up incoming air, pool water and tap water. However, it can be seen that even the best swimming facilities have room for improvement.

Suggested Citation

  • Kampel, Wolfgang & Aas, Bjørn & Bruland, Amund, 2014. "Characteristics of energy-efficient swimming facilities – A case study," Energy, Elsevier, vol. 75(C), pages 508-512.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:508-512
    DOI: 10.1016/j.energy.2014.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Westerlund, L. & Dahl, J., 1994. "Use of an open absorption heat-pump for energy conservation in a public swimming-pool," Applied Energy, Elsevier, vol. 49(3), pages 275-300.
    2. Johansson, L. & Westerlund, L., 2001. "Energy savings in indoor swimming-pools: comparison between different heat-recovery systems," Applied Energy, Elsevier, vol. 70(4), pages 281-303, December.
    3. Westerlund, L. & Dahl, J. & Johansson, L., 1996. "A theoretical investigation of the heat demand for public baths," Energy, Elsevier, vol. 21(7), pages 731-737.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Orynycz & Karol Tucki, 2021. "Total Productive Maintenance Approach to an Increase of the Energy Efficiency of a Hotel Facility and Mitigation of Water Consumption," Energies, MDPI, vol. 14(6), pages 1-21, March.
    2. Olga Orynycz & Karol Tucki, 2020. "Technology Management Leading to a Smart System Solution Assuring a Decrease of Energy Consumption in Recreational Facilities," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    3. Johansson, L. & Westerlund, L., 2001. "Energy savings in indoor swimming-pools: comparison between different heat-recovery systems," Applied Energy, Elsevier, vol. 70(4), pages 281-303, December.
    4. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    5. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    6. Katarzyna Ratajczak & Edward Szczechowiak & Aneta Pobudkowska, 2023. "Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement," Energies, MDPI, vol. 16(16), pages 1-25, August.
    7. Katsaprakakis, Dimitris Al., 2015. "Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe," Energy, Elsevier, vol. 81(C), pages 738-753.
    8. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    9. Zhao, J. & Bilbao, J.I. & Spooner, E.D. & Sproul, A.B., 2018. "Experimental study of a solar pool heating system under lower flow and low pump speed conditions," Renewable Energy, Elsevier, vol. 119(C), pages 320-335.
    10. Joanna Liebersbach & Alina Żabnieńska-Góra & Iwona Polarczyk & Marderos Ara Sayegh, 2021. "Feasibility of Grey Water Heat Recovery in Indoor Swimming Pools," Energies, MDPI, vol. 14(14), pages 1-41, July.
    11. Xuedong Yan & Fan Zhang & Chen Zeng & Man Zhang & Lochan Prasad Devkota & Tandong Yao, 2012. "Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal," IJERPH, MDPI, vol. 9(9), pages 1-18, September.
    12. Liu, Lanbin & Fu, Lin & Zhang, Shigang, 2014. "The design and analysis of two exhaust heat recovery systems for public shower facilities," Applied Energy, Elsevier, vol. 132(C), pages 267-275.
    13. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    14. Westerlund, Lars & Hermansson, Roger & Fagerström, Jonathan, 2012. "Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system," Applied Energy, Elsevier, vol. 96(C), pages 444-450.
    15. Giannis Papadopoulos & Evangelos I. Tolis & Giorgos Panaras, 2023. "Combined Investigation of Indoor Environmental Conditions and Energy Performance of an Aquatic Center," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    16. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:508-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.