IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p13137-d701155.html
   My bibliography  Save this article

Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet Highway

Author

Listed:
  • Zhuocheng Liu

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China
    Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China)

  • Yangang Yang

    (Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China)

  • Shuangxuan Ji

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China
    Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China)

  • Di Dong

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China)

  • Yinruizhi Li

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China)

  • Mengdi Wang

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China)

  • Liebao Han

    (School of Grassland Science, Beijing Forestry University, Beijing 100083, China)

  • Xueping Chen

    (Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China)

Abstract

In recent years, highway construction in the Qinghai-Tibet Plateau (QTP) has developed rapidly. When the highway passes through grassland, the soil, vegetation, and ecological environment along the line are disturbed. However, the impact on soil bacteria is still unclear. Soil bacteria play an important role in the ecological environment. The Qinghai-Tibet Highway (QTH) was selected as the research object to explore the changes in bacterial community structure, vegetation, soil, and other indicators. The results showed that the highway-related activities increased the degradation of vegetation along the road, significantly changed the physical and chemical properties of soil, and caused heavy metal pollution. These environmental factors affected the diversity and community structure of soil bacteria. This kind of disturbance shows a trend of gradually increasing from near to far from the highway. Gemmatimonas , Terrimonas , Nitrospira and Bacillus are more tolerant to environmental changes along the highway, while Barnesiella , and Blastococcus are more sensitive. The content of nitrate decreased and the content of ammonium nitrogen increased in the disturbed area, increasing the abundance of nitrifying bacteria. Therefore, the main factor of the disturbance of the QTH on the grassland is the decline of soil nutrient content, and the supplement of soil nutrients such as carbon and nitrogen should be taken into account in the process of ecological restoration of grassland along the line.

Suggested Citation

  • Zhuocheng Liu & Yangang Yang & Shuangxuan Ji & Di Dong & Yinruizhi Li & Mengdi Wang & Liebao Han & Xueping Chen, 2021. "Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet Highway," IJERPH, MDPI, vol. 18(24), pages 1-30, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13137-:d:701155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/13137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/13137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Xuedong Yan & Fan Zhang & Chen Zeng & Man Zhang & Lochan Prasad Devkota & Tandong Yao, 2012. "Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal," IJERPH, MDPI, vol. 9(9), pages 1-18, September.
    3. Xuedong Yan & Dan Gao & Fan Zhang & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Relationships between Heavy Metal Concentrations in Roadside Topsoil and Distance to Road Edge Based on Field Observations in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 10(3), pages 1-14, February.
    4. Yuanyuan He & Yan Xu & Yan Lv & Lei Nie & Hong Wang, 2020. "Soil Bacterial Community Structure in Turfy Swamp and Its Response to Highway Disturbance," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    5. W. Stanley Harpole & David Tilman, 2007. "Grassland species loss resulting from reduced niche dimension," Nature, Nature, vol. 446(7137), pages 791-793, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    3. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    4. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    5. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    6. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    7. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    8. Yajin Hu & Penghui Ma & Zhihao Yang & Siyuan Liu & Yingchao Li & Ling Li & Tongchao Wang & Kadambot H. M. Siddique, 2025. "The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis," Agriculture, MDPI, vol. 15(4), pages 1-19, February.
    9. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    10. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.
    11. Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Liu, Jieyun & Qiu, Husen & He, Shuai & Tian, Guangli, 2024. "Long-term mulched drip irrigation facilitates soil organic carbon stabilization and the dominance of microbial stochastic assembly processes," Agricultural Water Management, Elsevier, vol. 302(C).
    13. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    14. Chertov, Oleg & Shaw, Cindy & Shashkov, Maxim & Komarov, Alexander & Bykhovets, Sergey & Shanin, Vladimir & Grabarnik, Pavel & Frolov, Pavel & Kalinina, Olga & Priputina, Irina & Zubkova, Elena, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity," Ecological Modelling, Elsevier, vol. 345(C), pages 140-149.
    15. Bingrui Liu & Jiacheng Qian & Ran Zhao & Qijun Yang & Kening Wu & Huafu Zhao & Zhe Feng & Jianhui Dong, 2022. "Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban–Rural Gradient: A Case Study of Beijing," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    16. Wenxia Gan & Yuxuan Zhang & Jinying Xu & Ruqin Yang & Anna Xiao & Xiaodi Hu, 2023. "Spatial Distribution of Soil Heavy Metal Concentrations in Road-Neighboring Areas Using UAV-Based Hyperspectral Remote Sensing and GIS Technology," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    17. Yuanyuan He & Yan Xu & Yan Lv & Lei Nie & Hong Wang, 2020. "Soil Bacterial Community Structure in Turfy Swamp and Its Response to Highway Disturbance," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    18. Mirela Miclean & Oana Cadar & Erika Andrea Levei & Radu Roman & Alexandru Ozunu & Levente Levei, 2019. "Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    19. Li, Lanyu & Yao, Zhiyi & You, Siming & Wang, Chi-Hwa & Chong, Clive & Wang, Xiaonan, 2019. "Optimal design of negative emission hybrid renewable energy systems with biochar production," Applied Energy, Elsevier, vol. 243(C), pages 233-249.
    20. Maggie R. Davis & Bruno J. R. Alves & Douglas L. Karlen & Keith L. Kline & Marcelo Galdos & Dana Abulebdeh, 2017. "Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation," Sustainability, MDPI, vol. 10(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13137-:d:701155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.