IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2467-d1051484.html
   My bibliography  Save this article

Status, Sources and Assessment of Potentially Toxic Element (PTE) Contamination in Roadside Orchard Soils of Gaziantep (Türkiye)

Author

Listed:
  • Mustafa Demir

    (Biology Department, Faculty of Art and Sciences, Gaziantep University, University Boulevard, Şehitkamil, 27310 Gaziantep, Türkiye)

  • Erdihan Tunç

    (Biology Department, Faculty of Art and Sciences, Gaziantep University, University Boulevard, Şehitkamil, 27310 Gaziantep, Türkiye)

  • Sören Thiele-Bruhn

    (Soil Science Department, Regional and Environmental Sciences, Trier University, Campus II, D-54286 Trier, Germany)

  • Ömer Çelik

    (Department of Plant Production, Faculty of Applied Sciences, Muş Alpaslan University, 49250 Muş, Türkiye)

  • Awet Tekeste Tsegai

    (Independent Researcher, 1696 Ball Avenue, Grand Rapids, MI 49505, USA)

  • Nevzat Aslan

    (Pistachio Research Institute, Ministry of Agricultural and Forestry, University Boulevard No: 31, 27060 Gaziantep, Türkiye)

  • Sevgi Arslan

    (Biology Department, Faculty of Art and Sciences, Gaziantep University, University Boulevard, Şehitkamil, 27310 Gaziantep, Türkiye)

Abstract

To identify the sources of contamination with potentially toxic elements (PTEs) in roadside orchard soils and to evaluate the potential ecological and environmental impacts in Gaziantep, soil samples from 20 mixed pistachio and olive orchards on roadsides with different traffic densities and at different distances to the roads were analyzed. Concentrations were 23,407.36 ± 4183.76 mg·kg −1 for Fe, 421.78 ± 100.26 mg·kg −1 for Mn, 100.20 ± 41.92 mg·kg −1 for Ni, 73.30 ± 25.58 mg·kg −1 for Cr, 65.03 ± 12.19 mg·kg −1 for Zn, 60.38± 7.91 mg·kg −1 for Pb, 17.74 ± 3.35 mg·kg −1 for Cu, 14.93 ± 4.94 mg·kg −1 for Co, and 0.30 ± 0.12 mg·kg −1 for Cd. It was found that the Ni content in 51% and the Cr content in 18% of orchard soils were above the legal limits for agricultural soils (pH > 6) in Türkiye. Factor analysis (FA) showed that Co, Cr, Cu, Fe, Mn, Ni, and Pb loaded on the first factor (FC1), while Cd and Zn loaded mostly on the second factor (FC2). It was found that Cr, Ni, and Pb were primarily enriched through pedogenic processes, whereas Cd most likely originated from agricultural activities, while the impact of road traffic as source of PTE contamination was insignificant. It has been revealed that the soils are of low quality for agricultural production due to PTE contamination ( PIave ≥ 1). The SOPI values from environmental and ecological individual indices showed that the soil pollution level was moderate for Cd, Ni, and Pb, and low for Cr. The soil pollution index ( SOPI ) proved to be suitable for evaluating and comparing PTE pollution in regions with different soil properties.

Suggested Citation

  • Mustafa Demir & Erdihan Tunç & Sören Thiele-Bruhn & Ömer Çelik & Awet Tekeste Tsegai & Nevzat Aslan & Sevgi Arslan, 2023. "Status, Sources and Assessment of Potentially Toxic Element (PTE) Contamination in Roadside Orchard Soils of Gaziantep (Türkiye)," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2467-:d:1051484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Zhang & Xuedong Yan & Chen Zeng & Man Zhang & Suraj Shrestha & Lochan Prasad Devkota & Tandong Yao, 2012. "Influence of Traffic Activity on Heavy Metal Concentrations of Roadside Farmland Soil in Mountainous Areas," IJERPH, MDPI, vol. 9(5), pages 1-17, May.
    2. Nattanan Krailertrattanachai & Daojarus Ketrot & Worachart Wisawapipat, 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand," IJERPH, MDPI, vol. 16(5), pages 1-12, February.
    3. Cong Xu & Jie Pu & Bo Wen & Min Xia, 2021. "Potential Ecological Risks of Heavy Metals in Agricultural Soil Alongside Highways and Their Relationship with Landscape," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    4. Wanjiang She & Linghui Guo & Jiangbo Gao & Chi Zhang & Shaohong Wu & Yuanmei Jiao & Gaoru Zhu, 2022. "Spatial Distribution of Soil Heavy Metals and Associated Environmental Risks near Major Roads in Southern Tibet, China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Ma & Lina Han & Jiquan Zhang & Yichen Zhang & Qiuling Lang & Fengxu Li & Aru Han & Yongbin Bao & Kaiwei Li & Si Alu, 2019. "Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain," IJERPH, MDPI, vol. 16(11), pages 1-17, June.
    2. Elżbieta Zawierucha & Monika Skowrońska & Marcin Zawierucha, 2022. "Chemical and Biological Properties of Agricultural Soils Located along Communication Routes," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    3. Ionuţ-Mihai Prundeanu & Ciprian Chelariu & Sorin-Ionuț Balaban & Ovidiu-Gabriel Iancu, 2020. "Distribution and Behaviour of Some Trace Elements as a Function of Apple Varieties in Northeastern Romania," IJERPH, MDPI, vol. 17(7), pages 1-18, April.
    4. Guanxing Wang & Xuedong Yan & Fan Zhang & Chen Zeng & Dan Gao, 2013. "Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 11(1), pages 1-17, December.
    5. Sisira S. Withanachchi & Giorgi Ghambashidze & Ilia Kunchulia & Teo Urushadze & Angelika Ploeger, 2018. "Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia," IJERPH, MDPI, vol. 15(4), pages 1-25, March.
    6. Maja Radziemska & Joanna Fronczyk, 2015. "Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland," IJERPH, MDPI, vol. 12(10), pages 1-16, October.
    7. Nattanan Krailertrattanachai & Daojarus Ketrot & Worachart Wisawapipat, 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand," IJERPH, MDPI, vol. 16(5), pages 1-12, February.
    8. Peng Shi & Jun Xiao & Yafeng Wang & Liding Chen, 2014. "Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction," IJERPH, MDPI, vol. 11(3), pages 1-17, February.
    9. Xuedong Yan & Fan Zhang & Dan Gao & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Accumulations of Heavy Metals in Roadside Soils Close to Zhaling, Eling and Nam Co Lakes in the Tibetan Plateau," IJERPH, MDPI, vol. 10(6), pages 1-17, June.
    10. Vanda Éva Molnár & Edina Simon & Sarawut Ninsawat & Béla Tóthmérész & Szilárd Szabó, 2020. "Pollution Assessment Based on Element Concentration of Tree Leaves and Topsoil in Ayutthaya Province, Thailand," IJERPH, MDPI, vol. 17(14), pages 1-13, July.
    11. Xuedong Yan & Fan Zhang & Chen Zeng & Man Zhang & Lochan Prasad Devkota & Tandong Yao, 2012. "Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal," IJERPH, MDPI, vol. 9(9), pages 1-18, September.
    12. Liyu Yang & Pan Wu & Wentao Yang, 2022. "Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    13. Wenxia Gan & Yuxuan Zhang & Jinying Xu & Ruqin Yang & Anna Xiao & Xiaodi Hu, 2023. "Spatial Distribution of Soil Heavy Metal Concentrations in Road-Neighboring Areas Using UAV-Based Hyperspectral Remote Sensing and GIS Technology," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    14. Tingyu Fan & Jinhong Pan & Xingming Wang & Shun Wang & Akang Lu, 2022. "Ecological Risk Assessment and Source Apportionment of Heavy Metals in the Soil of an Opencast Mine in Xinjiang," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    15. Xuedong Yan & Dan Gao & Fan Zhang & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Relationships between Heavy Metal Concentrations in Roadside Topsoil and Distance to Road Edge Based on Field Observations in the Qinghai-Tibet Plateau, China," IJERPH, MDPI, vol. 10(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2467-:d:1051484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.