IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p15771-d985483.html
   My bibliography  Save this article

Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model

Author

Listed:
  • Faizeh Hatami

    (Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Shi Chen

    (Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
    School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Rajib Paul

    (Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
    School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Jean-Claude Thill

    (Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
    School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

Abstract

The global COVID-19 pandemic has taken a heavy toll on health, social, and economic costs since the end of 2019. Predicting the spread of a pandemic is essential to developing effective intervention policies. Since the beginning of this pandemic, many models have been developed to predict its pathways. However, the majority of these models assume homogeneous dynamics over the geographic space, while the pandemic exhibits substantial spatial heterogeneity. In addition, spatial interaction among territorial entities and variations in their magnitude impact the pandemic dynamics. In this study, we used a spatial extension of the SEIR-type epidemiological model to simulate and predict the 4-week number of COVID-19 cases in the Charlotte–Concord–Gastonia Metropolitan Statistical Area (MSA), USA. We incorporated a variety of covariates, including mobility, pharmaceutical, and non-pharmaceutical interventions, demographics, and weather data to improve the model’s predictive performance. We predicted the number of COVID-19 cases for up to four weeks in the 10 counties of the studied MSA simultaneously over the time period 29 March 2020 to 13 March 2021, and compared the results with the reported number of cases using the root-mean-squared error (RMSE) metric. Our results highlight the importance of spatial heterogeneity and spatial interactions among locations in COVID-19 pandemic modeling.

Suggested Citation

  • Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15771-:d:985483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/15771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/15771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    3. Smith, Michael & Fahrmeir, Ludwig, 2007. "Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 417-431, June.
    4. Grant D. Brown & Jacob J. Oleson & Aaron T. Porter, 2016. "An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks," Biometrics, The International Biometric Society, vol. 72(2), pages 335-343, June.
    5. Elizabeth C. Delmelle & Yuhong Zhou & Jean-Claude Thill, 2014. "Densification without Growth Management? Evidence from Local Land Development and Housing Trends in Charlotte, North Carolina, USA," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    6. Laura F. Boehm Vock & Brian J. Reich & Montserrat Fuentes & Francesca Dominici, 2015. "Spatial variable selection methods for investigating acute health effects of fine particulate matter components," Biometrics, The International Biometric Society, vol. 71(1), pages 167-177, March.
    7. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Md. Mokhlesur Rahman & Jean-Claude Thill, 2022. "Associations between COVID-19 Pandemic, Lockdown Measures and Human Mobility: Longitudinal Evidence from 86 Countries," IJERPH, MDPI, vol. 19(12), pages 1-31, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago Christiano Silva & Leandro Anghinoni & Cassia Pereira das Chagas & Liang Zhao & Benjamin Miranda Tabak, 2023. "Analysis of the Effectiveness of Public Health Measures on COVID-19 Transmission," IJERPH, MDPI, vol. 20(18), pages 1-19, September.
    2. Mingdong Lyu & Kuofu Liu & Randolph W. Hall, 2024. "Spatial Interaction Analysis of Infectious Disease Import and Export between Regions," IJERPH, MDPI, vol. 21(5), pages 1-19, May.
    3. Yaming Zhang & Jiaqi Zhang & Yaya Hamadou Koura & Changyuan Feng & Yanyuan Su & Wenjie Song & Linghao Kong, 2023. "Multiple Concurrent Causal Relationships and Multiple Governance Pathways for Non-Pharmaceutical Intervention Policies in Pandemics: A Fuzzy Set Qualitative Comparative Analysis Based on 102 Countries," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    4. Lei Zhang & Guang-Hui She & Yu-Rong She & Rong Li & Zhen-Su She, 2022. "Quantifying Social Interventions for Combating COVID-19 via a Symmetry-Based Model," IJERPH, MDPI, vol. 20(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    4. Ian Caine & Rebecca Walter & Nathan Foote, 2017. "San Antonio 360: The Rise and Decline of the Concentric City 1890–2010," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    5. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    6. Nilsson, Isabelle & Delmelle, Elizabeth C., 2023. "Smart growth as a luxury amenity? Exploring the relationship between the marketing of smart growth characteristics and neighborhood racial and income change," Journal of Transport Geography, Elsevier, vol. 106(C).
    7. Michelle F. Miranda & Hongtu Zhu & Joseph G. Ibrahim, 2013. "Bayesian Spatial Transformation Models with Applications in Neuroimaging Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1074-1083, December.
    8. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    9. Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    10. Mubarak Alrumaidhi & Hesham A. Rakha, 2024. "An Econometric Analysis to Explore the Temporal Variability of the Factors Affecting Crash Severity Due to COVID-19," Sustainability, MDPI, vol. 16(3), pages 1-26, February.
    11. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    12. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    13. Jeong Hwan Kook & Michele Guindani & Linlin Zhang & Marina Vannucci, 2019. "NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 3-21, April.
    14. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    15. Yin, Yanhong & Aikawa, Kohei & Mizokami, Shoshi, 2016. "Effect of housing relocation subsidy policy on energy consumption: A simulation case study," Applied Energy, Elsevier, vol. 168(C), pages 291-302.
    16. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    18. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    19. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    20. Faik Bilgili & Emrah Koçak & Sevda Kuşkaya, 2023. "Dynamics and Co-movements Between the COVID-19 Outbreak and the Stock Market in Latin American Countries: An Evaluation Based on the Wavelet-Partial Wavelet Coherence Model," Evaluation Review, , vol. 47(4), pages 630-652, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15771-:d:985483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.