IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.03073.html
   My bibliography  Save this paper

A neural network based model for multi-dimensional nonlinear Hawkes processes

Author

Listed:
  • Sobin Joseph
  • Shashi Jain

Abstract

This paper introduces the Neural Network for Nonlinear Hawkes processes (NNNH), a non-parametric method based on neural networks to fit nonlinear Hawkes processes. Our method is suitable for analyzing large datasets in which events exhibit both mutually-exciting and inhibitive patterns. The NNNH approach models the individual kernels and the base intensity of the nonlinear Hawkes process using feed forward neural networks and jointly calibrates the parameters of the networks by maximizing the log-likelihood function. We utilize Stochastic Gradient Descent to search for the optimal parameters and propose an unbiased estimator for the gradient, as well as an efficient computation method. We demonstrate the flexibility and accuracy of our method through numerical experiments on both simulated and real-world data, and compare it with state-of-the-art methods. Our results highlight the effectiveness of the NNNH method in accurately capturing the complexities of nonlinear Hawkes processes.

Suggested Citation

  • Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
  • Handle: RePEc:arx:papers:2303.03073
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.03073
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    2. P. A. W. Lewis & G. S. Shedler, 1979. "Simulation of Nonhomogeneous Poisson Processes with Degree-Two Exponential Polynomial Rate Function," Operations Research, INFORMS, vol. 27(5), pages 1026-1040, October.
    3. Bonnet, Anna & Martinez Herrera, Miguel & Sangnier, Maxime, 2021. "Maximum likelihood estimation for Hawkes processes with self-excitation or inhibition," Statistics & Probability Letters, Elsevier, vol. 179(C).
    4. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying Reflexivity in Financial Markets: Towards a Prediction of Flash Crashes," Swiss Finance Institute Research Paper Series 12-02, Swiss Finance Institute.
    5. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    6. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    7. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Maillart, Thomas & Sornette, Didier, 2019. "Aristotle vs. Ringelmann: On superlinear production in open source software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 964-972.
    4. Didier Sornette & Thomas Maillart & Giacomo Ghezzi, 2014. "How Much Is the Whole Really More than the Sum of Its Parts? 1 ⊞ 1 = 2.5: Superlinear Productivity in Collective Group Actions," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    5. Tomlinson, Matthew F. & Greenwood, David & Mucha-Kruczyński, Marcin, 2024. "2T-POT Hawkes model for left- and right-tail conditional quantile forecasts of financial log returns: Out-of-sample comparison of conditional EVT models," International Journal of Forecasting, Elsevier, vol. 40(1), pages 324-347.
    6. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    7. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    8. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    9. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    10. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    11. repec:wsi:acsxxx:v:21:y:2018:i:08:n:s0219525918500194 is not listed on IDEAS
    12. Yonatan Berman & Yoash Shapira & Eshel Ben-Jacob, 2014. "Unraveling Hidden Order in the Dynamics of Developed and Emerging Markets," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    13. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    14. Didier Sornette & Peter Cauwels, 2014. "1980–2008: The Illusion of the Perpetual Money Machine and What It Bodes for the Future," Risks, MDPI, vol. 2(2), pages 1-29, April.
    15. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    16. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    17. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    18. Tobias Braun & Jonas A Fiegen & Daniel C Wagner & Sebastian M Krause & Thomas Guhr, 2018. "Impact and recovery process of mini flash crashes: An empirical study," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-11, May.
    19. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    20. Jacques Peeperkorn, 2014. "A Proposed Model to Behaviourally Pricing Risk," Journal of Economics and Behavioral Studies, AMH International, vol. 6(6), pages 477-487.
    21. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.03073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.