IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i4p1074-1083.html
   My bibliography  Save this article

Bayesian Spatial Transformation Models with Applications in Neuroimaging Data

Author

Listed:
  • Michelle F. Miranda
  • Hongtu Zhu
  • Joseph G. Ibrahim

Abstract

No abstract is available for this item.

Suggested Citation

  • Michelle F. Miranda & Hongtu Zhu & Joseph G. Ibrahim, 2013. "Bayesian Spatial Transformation Models with Applications in Neuroimaging Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1074-1083, December.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:4:p:1074-1083
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12085
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Gössl & D. P. Auer & L. Fahrmeir, 2001. "Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging," Biometrics, The International Biometric Society, vol. 57(2), pages 554-562, June.
    2. Yimei Li & Hongtu Zhu & Dinggang Shen & Weili Lin & John H. Gilmore & Joseph G. Ibrahim, 2011. "Multiscale adaptive regression models for neuroimaging data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 559-578, September.
    3. Smith, Michael & Fahrmeir, Ludwig, 2007. "Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 417-431, June.
    4. Hongtu Zhu & Haibo Zhou & Jiahua Chen & Yimei Li & Jeffrey Lieberman & Martin Styner, 2009. "Adjusted Exponentially Tilted Likelihood with Applications to Brain Morphology," Biometrics, The International Biometric Society, vol. 65(3), pages 919-927, September.
    5. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    2. Peng Wei & Wei Pan, 2010. "Network‐based genomic discovery: application and comparison of Markov random‐field models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 105-125, January.
    3. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Hongtu Zhu & Jianqing Fan & Linglong Kong, 2014. "Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1084-1098, September.
    5. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    6. Zhe Yu & Raquel Prado & Erin Burke Quinlan & Steven C. Cramer & Hernando Ombao, 2016. "Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 549-563, April.
    7. Cheng‐Han Yu & Raquel Prado & Hernando Ombao & Daniel Rowe, 2023. "Bayesian spatiotemporal modeling on complex‐valued fMRI signals via kernel convolutions," Biometrics, The International Biometric Society, vol. 79(2), pages 616-628, June.
    8. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    9. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    10. Holly, Sean & Hashem Pesaran, M. & Yamagata, Takashi, 2011. "The spatial and temporal diffusion of house prices in the UK," Journal of Urban Economics, Elsevier, vol. 69(1), pages 2-23, January.
    11. Jade Xiaoqing Wang & Yimei Li & Wilburn E. Reddick & Heather M. Conklin & John O. Glass & Arzu Onar‐Thomas & Amar Gajjar & Cheng Cheng & Zhao‐Hua Lu, 2023. "A high‐dimensional mediation model for a neuroimaging mediator: Integrating clinical, neuroimaging, and neurocognitive data to mitigate late effects in pediatric cancer," Biometrics, The International Biometric Society, vol. 79(3), pages 2430-2443, September.
    12. Baiguo An & Beibei Zhang, 2020. "Logistic regression with image covariates via the combination of L1 and Sobolev regularizations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
    13. Shuangshuang Xu & Marco A. R. Ferreira & Erica M. Porter & Christopher T. Franck, 2023. "Bayesian model selection for generalized linear mixed models," Biometrics, The International Biometric Society, vol. 79(4), pages 3266-3278, December.
    14. F. S. Nathoo & A. Babul & A. Moiseev & N. Virji-Babul & M. F. Beg, 2014. "A variational Bayes spatiotemporal model for electromagnetic brain mapping," Biometrics, The International Biometric Society, vol. 70(1), pages 132-143, March.
    15. Jeong Hwan Kook & Michele Guindani & Linlin Zhang & Marina Vannucci, 2019. "NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 3-21, April.
    16. Brian J. Reich & Montserrat Fuentes & Amy H. Herring & Kelly R. Evenson, 2010. "Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression," Biometrics, The International Biometric Society, vol. 66(3), pages 772-782, September.
    17. Bradley W. McEvoy & Rajesh R. Nandy & Ram C. Tiwari, 2013. "Bayesian Approach for Clinical Trial Safety Data Using an Ising Prior," Biometrics, The International Biometric Society, vol. 69(3), pages 661-672, September.
    18. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    19. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    20. Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:4:p:1074-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.