IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i18p6758-d1239466.html
   My bibliography  Save this article

Analysis of the Effectiveness of Public Health Measures on COVID-19 Transmission

Author

Listed:
  • Thiago Christiano Silva

    (Universidade Católica de Brasília, Brasilia 71966-700, Brazil
    Department of Computing and Mathematics, Faculty of Philosophy, Sciences, and Literatures in Ribeirão Preto, Universidade de São Paulo, São Paulo 14040-901, Brazil)

  • Leandro Anghinoni

    (Department of Computing and Mathematics, Faculty of Philosophy, Sciences, and Literatures in Ribeirão Preto, Universidade de São Paulo, São Paulo 14040-901, Brazil)

  • Cassia Pereira das Chagas

    (Universidade Católica de Brasília, Brasilia 71966-700, Brazil)

  • Liang Zhao

    (Department of Computing and Mathematics, Faculty of Philosophy, Sciences, and Literatures in Ribeirão Preto, Universidade de São Paulo, São Paulo 14040-901, Brazil)

  • Benjamin Miranda Tabak

    (FGV/EPPG Escola de Políticas Públicas e Governo, Fundação Getúlio Vargas (School of Public Policy and Government, Getulio Vargas Foundation), Brasilia 70830-020, Brazil)

Abstract

In this study, we investigate the COVID-19 epidemics in Brazilian cities, using early-time approximations of the SIR model in networks and combining the VAR (vector autoregressive) model with machine learning techniques. Different from other works, the underlying network was constructed by inputting real-world data on local COVID-19 cases reported by Brazilian cities into a regularized VAR model. This model estimates directional COVID-19 transmission channels (connections or links between nodes) of each pair of cities (vertices or nodes) using spectral network analysis. Despite the simple epidemiological model, our predictions align well with the real COVID-19 dynamics across Brazilian municipalities, using data only up until May 2020. Given the rising number of infectious people in Brazil—a possible indicator of a second wave—these early-time approximations could be valuable in gauging the magnitude of the next contagion peak. We further examine the effect of public health policies, including social isolation and mask usage, by creating counterfactual scenarios to quantify the human impact of these public health measures in reducing peak COVID-19 cases. We discover that the effectiveness of social isolation and mask usage varies significantly across cities. We hope our study will support the development of future public health measures.

Suggested Citation

  • Thiago Christiano Silva & Leandro Anghinoni & Cassia Pereira das Chagas & Liang Zhao & Benjamin Miranda Tabak, 2023. "Analysis of the Effectiveness of Public Health Measures on COVID-19 Transmission," IJERPH, MDPI, vol. 20(18), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:18:p:6758-:d:1239466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/18/6758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/18/6758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    2. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    2. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    3. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    4. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    8. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
    9. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    10. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    11. Yan, Jiaye & Zhou, Jiaying & Wu, Zhaoyan, 2019. "Structure identification of unknown complex-variable dynamical networks with complex coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 256-265.
    12. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    13. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Xiao, Yunpeng & Zhang, Li & Li, Qian & Liu, Ling, 2019. "MM-SIS: Model for multiple information spreading in multiplex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 135-146.
    15. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    16. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    17. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    19. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    20. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:18:p:6758-:d:1239466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.